随机双截数据线性回归

IF 0.4 Q4 STATISTICS & PROBABILITY
G. Frank, A. Dörre
{"title":"随机双截数据线性回归","authors":"G. Frank, A. Dörre","doi":"10.37920/sasj.2017.51.1.1","DOIUrl":null,"url":null,"abstract":"Non-parametric estimation for a linear regression model under random double-truncation is investigated, i.e. the variables are observed if and only if the dependent variable lies in a random interval. The method requires only weak distribution assumptions to ensure identifiability, but does not require any specific distribution family for any variable, neither for the truncation variables nor for the error term. By using non-parametric estimators of several distribution functions, consistent and asymptotically normal estimators are established. A simulation study shows the tendency that the lower the probability of observation, the higher the mean squared error of the estimators, even for the same number of observations. Finally, the method is applied to a doubly truncated data set of German companies, where the age-at-insolvency is of interest. Keywords: Insolvency risk, Linear regression, Non-parametric, Random double-truncation","PeriodicalId":53997,"journal":{"name":"SOUTH AFRICAN STATISTICAL JOURNAL","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Linear regression with randomly double-truncated data\",\"authors\":\"G. Frank, A. Dörre\",\"doi\":\"10.37920/sasj.2017.51.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-parametric estimation for a linear regression model under random double-truncation is investigated, i.e. the variables are observed if and only if the dependent variable lies in a random interval. The method requires only weak distribution assumptions to ensure identifiability, but does not require any specific distribution family for any variable, neither for the truncation variables nor for the error term. By using non-parametric estimators of several distribution functions, consistent and asymptotically normal estimators are established. A simulation study shows the tendency that the lower the probability of observation, the higher the mean squared error of the estimators, even for the same number of observations. Finally, the method is applied to a doubly truncated data set of German companies, where the age-at-insolvency is of interest. Keywords: Insolvency risk, Linear regression, Non-parametric, Random double-truncation\",\"PeriodicalId\":53997,\"journal\":{\"name\":\"SOUTH AFRICAN STATISTICAL JOURNAL\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SOUTH AFRICAN STATISTICAL JOURNAL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37920/sasj.2017.51.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SOUTH AFRICAN STATISTICAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37920/sasj.2017.51.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

研究了随机双截下线性回归模型的非参数估计,即当且仅当因变量位于随机区间时,变量被观察到。该方法只需要弱分布假设来确保可辨识性,但不需要任何变量的特定分布族,无论是截断变量还是误差项。利用几种分布函数的非参数估计量,建立了一致的渐近正态估计量。仿真研究表明,即使对相同数量的观测值,观测概率越低,估计量的均方误差也越大。最后,将该方法应用于德国公司的双重截断数据集,其中破产年龄令人感兴趣。关键词:破产风险,线性回归,非参数,随机双截
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear regression with randomly double-truncated data
Non-parametric estimation for a linear regression model under random double-truncation is investigated, i.e. the variables are observed if and only if the dependent variable lies in a random interval. The method requires only weak distribution assumptions to ensure identifiability, but does not require any specific distribution family for any variable, neither for the truncation variables nor for the error term. By using non-parametric estimators of several distribution functions, consistent and asymptotically normal estimators are established. A simulation study shows the tendency that the lower the probability of observation, the higher the mean squared error of the estimators, even for the same number of observations. Finally, the method is applied to a doubly truncated data set of German companies, where the age-at-insolvency is of interest. Keywords: Insolvency risk, Linear regression, Non-parametric, Random double-truncation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SOUTH AFRICAN STATISTICAL JOURNAL
SOUTH AFRICAN STATISTICAL JOURNAL STATISTICS & PROBABILITY-
CiteScore
0.30
自引率
0.00%
发文量
18
期刊介绍: The journal will publish innovative contributions to the theory and application of statistics. Authoritative review articles on topics of general interest which are not readily accessible in a coherent form, will be also be considered for publication. Articles on applications or of a general nature will be published in separate sections and an author should indicate which of these sections an article is intended for. An applications article should normally consist of the analysis of actual data and need not necessarily contain new theory. The data should be made available with the article but need not necessarily be part of it.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信