船舶横摇对光伏板性能影响的实验研究

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
W. Zeńczak, Z. Zapałowicz
{"title":"船舶横摇对光伏板性能影响的实验研究","authors":"W. Zeńczak, Z. Zapałowicz","doi":"10.2478/pomr-2022-0051","DOIUrl":null,"url":null,"abstract":"Abstract The aim of the International Maritime Organization (IMO) to reduce by half the amount of greenhouse gases emitted by marine ships by 2050, and its vision of the fastest total decarbonisation in the maritime shipping industry within the present century, calls for implementation with various means of decarbonisation. The IMO approaches the process of decarbonisation in two phases. Firstly, short-term, compact projects are to be considered, next, more complex, medium- and long-term solutions should be aimed at. The preferred arrangements to be applied are photovoltaic systems. Their performance depends to a high degree on the solar incidence angle. In the case of a ship swinging as a result of its course in relation to the wave and incidence direction, the incidence angle undergoes significant periodic changes with a significant effect on the power generated by the PV panels. As a result, the total amount of energy produced by the PV panels diminishes. The paper presents experimental research results obtained on the stand that allowed the investigation of PV panels in simulated marine conditions. Two characteristic positions of a PV panel’s rotation axis in relation to the solar rays’ incidence direction were investigated. It was proved for both variants that the rolling period and solar incidence angle affected the power generated by the PV panel.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Research of the Impact of Ship’s Rolling on the Performance of PV Panels\",\"authors\":\"W. Zeńczak, Z. Zapałowicz\",\"doi\":\"10.2478/pomr-2022-0051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of the International Maritime Organization (IMO) to reduce by half the amount of greenhouse gases emitted by marine ships by 2050, and its vision of the fastest total decarbonisation in the maritime shipping industry within the present century, calls for implementation with various means of decarbonisation. The IMO approaches the process of decarbonisation in two phases. Firstly, short-term, compact projects are to be considered, next, more complex, medium- and long-term solutions should be aimed at. The preferred arrangements to be applied are photovoltaic systems. Their performance depends to a high degree on the solar incidence angle. In the case of a ship swinging as a result of its course in relation to the wave and incidence direction, the incidence angle undergoes significant periodic changes with a significant effect on the power generated by the PV panels. As a result, the total amount of energy produced by the PV panels diminishes. The paper presents experimental research results obtained on the stand that allowed the investigation of PV panels in simulated marine conditions. Two characteristic positions of a PV panel’s rotation axis in relation to the solar rays’ incidence direction were investigated. It was proved for both variants that the rolling period and solar incidence angle affected the power generated by the PV panel.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pomr-2022-0051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2022-0051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

摘要国际海事组织(IMO)到2050年将船舶温室气体排放量减少一半的目标,以及其在本世纪内实现海运业最快全面脱碳的愿景,要求采用各种脱碳手段。国际海事组织将脱碳进程分为两个阶段。首先,应考虑短期、紧凑的项目,其次,应针对更复杂的中长期解决方案。首选的安排是光伏系统。它们的性能在很大程度上取决于太阳的入射角。在船舶因其相对于波浪和入射方向的航向而摆动的情况下,入射角会发生显著的周期性变化,对光伏电池板产生的功率产生显著影响。因此,光伏电池板产生的总能量减少。本文介绍了在模拟海洋条件下对光伏电池板进行研究的试验研究结果。研究了光伏电池板旋转轴相对于太阳光线入射方向的两个特征位置。事实证明,对于这两种变体,滚动周期和太阳入射角都会影响光伏电池板产生的功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Research of the Impact of Ship’s Rolling on the Performance of PV Panels
Abstract The aim of the International Maritime Organization (IMO) to reduce by half the amount of greenhouse gases emitted by marine ships by 2050, and its vision of the fastest total decarbonisation in the maritime shipping industry within the present century, calls for implementation with various means of decarbonisation. The IMO approaches the process of decarbonisation in two phases. Firstly, short-term, compact projects are to be considered, next, more complex, medium- and long-term solutions should be aimed at. The preferred arrangements to be applied are photovoltaic systems. Their performance depends to a high degree on the solar incidence angle. In the case of a ship swinging as a result of its course in relation to the wave and incidence direction, the incidence angle undergoes significant periodic changes with a significant effect on the power generated by the PV panels. As a result, the total amount of energy produced by the PV panels diminishes. The paper presents experimental research results obtained on the stand that allowed the investigation of PV panels in simulated marine conditions. Two characteristic positions of a PV panel’s rotation axis in relation to the solar rays’ incidence direction were investigated. It was proved for both variants that the rolling period and solar incidence angle affected the power generated by the PV panel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信