{"title":"斯匹次卑尔根岛北部的比勒约登断裂带:一个主要的岩层边界?","authors":"Jean-Baptiste P. Koehl, Lis Allaart","doi":"10.33265/polar.v40.7668","DOIUrl":null,"url":null,"abstract":"The Billefjorden Fault Zone is a major terrane boundary in the Norwegian Arctic. The fault separates basement rocks of Svalbard’s north-eastern and north-western terranes that recorded discrete Precambrian tectonothermal histories and were accreted, intensely deformed and metamorphosed during the Caledonian Orogeny. Although the fault represents a major, crustal-scale tectonic boundary, its northward extent is not well constrained. The present short contribution addresses this issue and presents new seismic mapping of structures and rock units north of Wijdefjorden, where the Billefjorden Fault Zone may continue. This study shows that there is no evidence for major faulting of the top-basement reflection, and therefore, that the Billefjorden Fault Zone may die out within Wijdefjorden–Austfjorden, step ≥ 20 km laterally, or be invisible on the presented seismic data. Seismic data also suggest that Caledonian basement rocks in Ny-Friesland (north-eastern terrane) are not significantly different from basement rocks below the Devonian Graben in Andrée Land (north-western terrane). Potential implications include the absence of a major terrane boundary in northern Spitsbergen.","PeriodicalId":49684,"journal":{"name":"Polar Research","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Billefjorden Fault Zone north of Spitsbergen: a major terrane boundary?\",\"authors\":\"Jean-Baptiste P. Koehl, Lis Allaart\",\"doi\":\"10.33265/polar.v40.7668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Billefjorden Fault Zone is a major terrane boundary in the Norwegian Arctic. The fault separates basement rocks of Svalbard’s north-eastern and north-western terranes that recorded discrete Precambrian tectonothermal histories and were accreted, intensely deformed and metamorphosed during the Caledonian Orogeny. Although the fault represents a major, crustal-scale tectonic boundary, its northward extent is not well constrained. The present short contribution addresses this issue and presents new seismic mapping of structures and rock units north of Wijdefjorden, where the Billefjorden Fault Zone may continue. This study shows that there is no evidence for major faulting of the top-basement reflection, and therefore, that the Billefjorden Fault Zone may die out within Wijdefjorden–Austfjorden, step ≥ 20 km laterally, or be invisible on the presented seismic data. Seismic data also suggest that Caledonian basement rocks in Ny-Friesland (north-eastern terrane) are not significantly different from basement rocks below the Devonian Graben in Andrée Land (north-western terrane). Potential implications include the absence of a major terrane boundary in northern Spitsbergen.\",\"PeriodicalId\":49684,\"journal\":{\"name\":\"Polar Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polar Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.33265/polar.v40.7668\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.33265/polar.v40.7668","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
The Billefjorden Fault Zone north of Spitsbergen: a major terrane boundary?
The Billefjorden Fault Zone is a major terrane boundary in the Norwegian Arctic. The fault separates basement rocks of Svalbard’s north-eastern and north-western terranes that recorded discrete Precambrian tectonothermal histories and were accreted, intensely deformed and metamorphosed during the Caledonian Orogeny. Although the fault represents a major, crustal-scale tectonic boundary, its northward extent is not well constrained. The present short contribution addresses this issue and presents new seismic mapping of structures and rock units north of Wijdefjorden, where the Billefjorden Fault Zone may continue. This study shows that there is no evidence for major faulting of the top-basement reflection, and therefore, that the Billefjorden Fault Zone may die out within Wijdefjorden–Austfjorden, step ≥ 20 km laterally, or be invisible on the presented seismic data. Seismic data also suggest that Caledonian basement rocks in Ny-Friesland (north-eastern terrane) are not significantly different from basement rocks below the Devonian Graben in Andrée Land (north-western terrane). Potential implications include the absence of a major terrane boundary in northern Spitsbergen.
期刊介绍:
Since 1982, Polar Research has been the international, peer-reviewed journal of the Norwegian Polar Institute, Norway''s central institution for research, environmental monitoring and mapping of the polar regions. Aiming to promote the exchange of scientific knowledge about the Arctic and Antarctic across disciplinary boundaries, Polar Research serves an international community of researchers and managers. As an open-access journal, Polar Research makes its contents freely available to the general public.
Original primary research papers comprise the mainstay of Polar Research. Review articles, brief research notes, letters to the editor and book reviews are also included. Special issues are published from time to time.
The scope of Polar Research encompasses research in all scientific disciplines relevant to the polar regions. These include, but are not limited to, the subfields of biology, ecology, geology, oceanography, glaciology and atmospheric science. Submissions from the social sciences and those focusing on polar management and policy issues are welcome. Contributions about Antarctica are particularly encouraged.