{"title":"影响939合金蠕变裂纹发展分析表征的因素","authors":"S. Holdsworth","doi":"10.3233/sfc-228001","DOIUrl":null,"url":null,"abstract":"Creep crack growth rates originally gathered for the 𝛾′ strengthened cast nickel based superalloy Alloy-939 in terms of apparent stress intensity factor are re-evaluated as a function of the time dependent C* parameter, with crack propagation rates being insensitive to grain size at 750 and 850 °C. However, whereas a˙C(Ka) rates at 750 °C are significantly lower than those at 850 °C, equivalent a˙C(C*) rates are relatively insensitive to temperature, comparing well with the plane strain a˙C(C*) rates predicted using an approximate reference stress based C* model. While overall CT-specimen creep crack growth times for Alloy-939 can be predicted using uniaxial creep-rupture strength data when expressed in terms of reference stress at 850 °C, this appears not to be possible at 750 °C. The observation is explained with respect to evidence provided by a modified time dependent failure assessment diagram. The influence is examined of thermal transient durations at 850 °C (from 750 °C), or at 750 °C (from 850 °C) on a˙C(Ka) creep crack growth rates and tR(𝜎ref) overall lives.","PeriodicalId":41486,"journal":{"name":"Strength Fracture and Complexity","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factors influencing the analytical representation of creep crack development in Alloy 939\",\"authors\":\"S. Holdsworth\",\"doi\":\"10.3233/sfc-228001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Creep crack growth rates originally gathered for the 𝛾′ strengthened cast nickel based superalloy Alloy-939 in terms of apparent stress intensity factor are re-evaluated as a function of the time dependent C* parameter, with crack propagation rates being insensitive to grain size at 750 and 850 °C. However, whereas a˙C(Ka) rates at 750 °C are significantly lower than those at 850 °C, equivalent a˙C(C*) rates are relatively insensitive to temperature, comparing well with the plane strain a˙C(C*) rates predicted using an approximate reference stress based C* model. While overall CT-specimen creep crack growth times for Alloy-939 can be predicted using uniaxial creep-rupture strength data when expressed in terms of reference stress at 850 °C, this appears not to be possible at 750 °C. The observation is explained with respect to evidence provided by a modified time dependent failure assessment diagram. The influence is examined of thermal transient durations at 850 °C (from 750 °C), or at 750 °C (from 850 °C) on a˙C(Ka) creep crack growth rates and tR(𝜎ref) overall lives.\",\"PeriodicalId\":41486,\"journal\":{\"name\":\"Strength Fracture and Complexity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strength Fracture and Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/sfc-228001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strength Fracture and Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/sfc-228001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Factors influencing the analytical representation of creep crack development in Alloy 939
Creep crack growth rates originally gathered for the 𝛾′ strengthened cast nickel based superalloy Alloy-939 in terms of apparent stress intensity factor are re-evaluated as a function of the time dependent C* parameter, with crack propagation rates being insensitive to grain size at 750 and 850 °C. However, whereas a˙C(Ka) rates at 750 °C are significantly lower than those at 850 °C, equivalent a˙C(C*) rates are relatively insensitive to temperature, comparing well with the plane strain a˙C(C*) rates predicted using an approximate reference stress based C* model. While overall CT-specimen creep crack growth times for Alloy-939 can be predicted using uniaxial creep-rupture strength data when expressed in terms of reference stress at 850 °C, this appears not to be possible at 750 °C. The observation is explained with respect to evidence provided by a modified time dependent failure assessment diagram. The influence is examined of thermal transient durations at 850 °C (from 750 °C), or at 750 °C (from 850 °C) on a˙C(Ka) creep crack growth rates and tR(𝜎ref) overall lives.
期刊介绍:
Strength, Fracture and Complexity: An International Journal is devoted to solve the strength and fracture unifiedly in non linear and systematised manner as complexity system. An attempt is welcome to challenge to get the clue to a new paradigm or to studies by fusing nano, meso microstructural, continuum and large scaling approach. The concept, theoretical and/or experimental, respectively are/is welcome. On the other hand the presentation of the knowledge-based data for the aims is welcome, being useful for the knowledge-based accumulation. Also, deformation and fracture in geophysics and geotechnology may be another one of interesting subjects, for instance, in relation to earthquake science and engineering.