Yu Deng, P. Germain, L. Guth, Simon Leo Rydin Myerson
{"title":"非矩形二维环面Schrödinger方程的Strichartz估计","authors":"Yu Deng, P. Germain, L. Guth, Simon Leo Rydin Myerson","doi":"10.1353/ajm.2022.0014","DOIUrl":null,"url":null,"abstract":"abstract:We propose a conjecture for long time Strichartz estimates on generic (non-rectangular) flat tori. We proceed to partially prove it in dimension 2. Our arguments involve on the one hand Weyl bounds; and on the other hands bounds on the number of solutions of Diophantine problems.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"144 1","pages":"701 - 745"},"PeriodicalIF":1.7000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Strichartz estimates for the Schrödinger equation on non-rectangular two-dimensional tori\",\"authors\":\"Yu Deng, P. Germain, L. Guth, Simon Leo Rydin Myerson\",\"doi\":\"10.1353/ajm.2022.0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"abstract:We propose a conjecture for long time Strichartz estimates on generic (non-rectangular) flat tori. We proceed to partially prove it in dimension 2. Our arguments involve on the one hand Weyl bounds; and on the other hands bounds on the number of solutions of Diophantine problems.\",\"PeriodicalId\":7453,\"journal\":{\"name\":\"American Journal of Mathematics\",\"volume\":\"144 1\",\"pages\":\"701 - 745\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2022.0014\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2022.0014","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Strichartz estimates for the Schrödinger equation on non-rectangular two-dimensional tori
abstract:We propose a conjecture for long time Strichartz estimates on generic (non-rectangular) flat tori. We proceed to partially prove it in dimension 2. Our arguments involve on the one hand Weyl bounds; and on the other hands bounds on the number of solutions of Diophantine problems.
期刊介绍:
The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.