用有限元法计算铜包钢棒在水中的后向散射超声波场及包层腐蚀和包层与棒间界面脱粘对该场的影响

Q4 Chemical Engineering
Omid Noormohammadi Arani, Mehdi Zeighami Salimabad, A. Yaghootian, M. Kari
{"title":"用有限元法计算铜包钢棒在水中的后向散射超声波场及包层腐蚀和包层与棒间界面脱粘对该场的影响","authors":"Omid Noormohammadi Arani, Mehdi Zeighami Salimabad, A. Yaghootian, M. Kari","doi":"10.22055/JACM.2021.38098.3172","DOIUrl":null,"url":null,"abstract":"Inspection and specificity of the intactness of multi-layer and small-size parts like copper-clad steel rod is a hard task and requires high accuracy. The intactness of these parts is crucial due to their importance. One of the inspection methods for these parts is using ultrasonic waves. The scattering phenomenon occurs when these waves impact curved shape bodies under a special condition. The ultrasonic scattering waves contain a lot of information from the physical conditions and mechanical properties of the part. However, using these waves requires high accuracy and attention due to their complexity. One result of the ultrasonic scattering waves is the far-field backscattered frequency spectrum, form function. For the first time in this research, the form function of a copper-clad steel rod that is immersed in water is calculated using the finite element method (FEM) available in the commercial ABAQUS software. For validating the proposed model, the simulation results are compared with analytical and experimental results in the normalized frequency range of 4 £ Ka £ 10. A good agreement is observed between the three methods at the resonance frequencies, and in the overall form of obtained form function. Furthermore, the effects of the two most common defects in these rods, i.e., the corrosion and interfacial disbond between the clad and steel rod, is studied. Results show that this method can properly specify the corrosion percentage and location, and also the length and location of the interfacial disbond defect.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Calculation of Backscattered Ultrasonic Waves Field from a Copper-clad Steel Rod Immersing in Water and Effect of Clad Corrosion and Interfacial Disbond between Clad and Rod Defects on this Field using the Finite Element Method\",\"authors\":\"Omid Noormohammadi Arani, Mehdi Zeighami Salimabad, A. Yaghootian, M. Kari\",\"doi\":\"10.22055/JACM.2021.38098.3172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspection and specificity of the intactness of multi-layer and small-size parts like copper-clad steel rod is a hard task and requires high accuracy. The intactness of these parts is crucial due to their importance. One of the inspection methods for these parts is using ultrasonic waves. The scattering phenomenon occurs when these waves impact curved shape bodies under a special condition. The ultrasonic scattering waves contain a lot of information from the physical conditions and mechanical properties of the part. However, using these waves requires high accuracy and attention due to their complexity. One result of the ultrasonic scattering waves is the far-field backscattered frequency spectrum, form function. For the first time in this research, the form function of a copper-clad steel rod that is immersed in water is calculated using the finite element method (FEM) available in the commercial ABAQUS software. For validating the proposed model, the simulation results are compared with analytical and experimental results in the normalized frequency range of 4 £ Ka £ 10. A good agreement is observed between the three methods at the resonance frequencies, and in the overall form of obtained form function. Furthermore, the effects of the two most common defects in these rods, i.e., the corrosion and interfacial disbond between the clad and steel rod, is studied. Results show that this method can properly specify the corrosion percentage and location, and also the length and location of the interfacial disbond defect.\",\"PeriodicalId\":37801,\"journal\":{\"name\":\"Applied and Computational Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22055/JACM.2021.38098.3172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22055/JACM.2021.38098.3172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 1

摘要

铜包钢棒等多层小尺寸零件的完整性检测和鉴定是一项艰巨的任务,对精度要求很高。由于这些部件的重要性,它们的完整性至关重要。这些零件的检验方法之一是使用超声波。这些波在特殊条件下撞击弯曲体时,会产生散射现象。超声散射波包含了零件物理状况和力学性能的大量信息。然而,由于这些波的复杂性,使用它们需要很高的精度和注意力。超声散射波的一个结果是远场后向散射频谱,形式函数。本研究首次采用商用ABAQUS软件中的有限元法对浸在水中的铜包钢棒的形状函数进行了计算。为了验证所提出的模型,将仿真结果与归一化频率范围4 ~ 10的分析结果和实验结果进行了比较。三种方法在共振频率和得到的形式函数的总体形式上都有很好的一致性。此外,还研究了这些棒中最常见的两种缺陷的影响,即腐蚀和包层与钢棒之间的界面脱离。结果表明,该方法能较好地确定腐蚀的百分比和位置,以及界面脱离缺陷的长度和位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calculation of Backscattered Ultrasonic Waves Field from a Copper-clad Steel Rod Immersing in Water and Effect of Clad Corrosion and Interfacial Disbond between Clad and Rod Defects on this Field using the Finite Element Method
Inspection and specificity of the intactness of multi-layer and small-size parts like copper-clad steel rod is a hard task and requires high accuracy. The intactness of these parts is crucial due to their importance. One of the inspection methods for these parts is using ultrasonic waves. The scattering phenomenon occurs when these waves impact curved shape bodies under a special condition. The ultrasonic scattering waves contain a lot of information from the physical conditions and mechanical properties of the part. However, using these waves requires high accuracy and attention due to their complexity. One result of the ultrasonic scattering waves is the far-field backscattered frequency spectrum, form function. For the first time in this research, the form function of a copper-clad steel rod that is immersed in water is calculated using the finite element method (FEM) available in the commercial ABAQUS software. For validating the proposed model, the simulation results are compared with analytical and experimental results in the normalized frequency range of 4 £ Ka £ 10. A good agreement is observed between the three methods at the resonance frequencies, and in the overall form of obtained form function. Furthermore, the effects of the two most common defects in these rods, i.e., the corrosion and interfacial disbond between the clad and steel rod, is studied. Results show that this method can properly specify the corrosion percentage and location, and also the length and location of the interfacial disbond defect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Mechanics
Applied and Computational Mechanics Engineering-Computational Mechanics
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
14 weeks
期刊介绍: The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信