类型可定义的NIP字段是Artin-Schreier闭域

Pub Date : 2022-01-08 DOI:10.4064/fm149-8-2022
Will Johnson
{"title":"类型可定义的NIP字段是Artin-Schreier闭域","authors":"Will Johnson","doi":"10.4064/fm149-8-2022","DOIUrl":null,"url":null,"abstract":"Let $K$ be a type-definable infinite field in an NIP theory. If $K$ has characteristic $p>0$, then $K$ is Artin-Schreier closed (it has no Artin-Schreier extensions). As a consequence, $p$ does not divide the degree of any finite separable extension of $K$. This generalizes a theorem of Kaplan, Scanlon, and Wagner.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Type-definable NIP fields are Artin–Schreier closed\",\"authors\":\"Will Johnson\",\"doi\":\"10.4064/fm149-8-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $K$ be a type-definable infinite field in an NIP theory. If $K$ has characteristic $p>0$, then $K$ is Artin-Schreier closed (it has no Artin-Schreier extensions). As a consequence, $p$ does not divide the degree of any finite separable extension of $K$. This generalizes a theorem of Kaplan, Scanlon, and Wagner.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/fm149-8-2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm149-8-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$K$是NIP理论中的一个可类型定义的无限域。如果$K$具有特征$p>0$,则$K$是Artin-Schreier闭的(它没有Artin-Schreier扩展)。因此,$p$不能除$K$的任何有限可分扩展的阶。这推广了卡普兰、斯坎伦和瓦格纳的一个定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Type-definable NIP fields are Artin–Schreier closed
Let $K$ be a type-definable infinite field in an NIP theory. If $K$ has characteristic $p>0$, then $K$ is Artin-Schreier closed (it has no Artin-Schreier extensions). As a consequence, $p$ does not divide the degree of any finite separable extension of $K$. This generalizes a theorem of Kaplan, Scanlon, and Wagner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信