驱动混沌系统的能量跃迁密度:一个复合示踪公式

Q2 Physics and Astronomy
A. M. Ozorio de Almeida
{"title":"驱动混沌系统的能量跃迁密度:一个复合示踪公式","authors":"A. M. Ozorio de Almeida","doi":"10.3390/quantum4040040","DOIUrl":null,"url":null,"abstract":"Oscillations in the probability density of quantum transitions of the eigenstates of a chaotic Hamiltonian within classically narrow energy ranges have been shown to depend on closed compound orbits. These are formed by a pair of orbit segments, one in the energy shell of the original Hamiltonian and the other in the energy shell of the driven Hamiltonian, with endpoints that coincide. Viewed in the time domain, the same pair of trajectory segments arises in the semiclassical evaluation of the trace of a compound propagator: the product of the complex exponentials of the original Hamiltonian and of its driven image. It is shown here that the probability density is the double Fourier transform of this trace, and that the closed compound orbits emulate the role played by the periodic orbits in Gutzwiller’s trace formula in its semiclassical evaluation. The phase of the oscillations with the energies or the evolution parameters agree with those previously obtained, whereas the amplitude of the contribution of each closed compound orbit is more compact and independent of any feature of the Weyl–Wigner representation in which the calculation was carried out.","PeriodicalId":34124,"journal":{"name":"Quantum Reports","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Transition Density of Driven Chaotic Systems: A Compound Trace Formula\",\"authors\":\"A. M. Ozorio de Almeida\",\"doi\":\"10.3390/quantum4040040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oscillations in the probability density of quantum transitions of the eigenstates of a chaotic Hamiltonian within classically narrow energy ranges have been shown to depend on closed compound orbits. These are formed by a pair of orbit segments, one in the energy shell of the original Hamiltonian and the other in the energy shell of the driven Hamiltonian, with endpoints that coincide. Viewed in the time domain, the same pair of trajectory segments arises in the semiclassical evaluation of the trace of a compound propagator: the product of the complex exponentials of the original Hamiltonian and of its driven image. It is shown here that the probability density is the double Fourier transform of this trace, and that the closed compound orbits emulate the role played by the periodic orbits in Gutzwiller’s trace formula in its semiclassical evaluation. The phase of the oscillations with the energies or the evolution parameters agree with those previously obtained, whereas the amplitude of the contribution of each closed compound orbit is more compact and independent of any feature of the Weyl–Wigner representation in which the calculation was carried out.\",\"PeriodicalId\":34124,\"journal\":{\"name\":\"Quantum Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/quantum4040040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/quantum4040040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

在经典的窄能量范围内,混沌哈密顿算子本征态量子跃迁的概率密度的振荡已被证明依赖于封闭的复合轨道。它们是由一对轨道段组成的,一个在原始哈密顿量的能量层,另一个在驱动哈密顿量的能量层,它们的端点重合。从时域来看,在复合传播子轨迹的半经典评估中出现了相同的一对轨迹段:原始哈密顿量的复指数和其驱动像的复指数的乘积。结果表明,概率密度是该轨迹的二重傅里叶变换,封闭复合轨道在半经典评价中模拟了古茨威勒轨迹公式中周期轨道所起的作用。与能量或演化参数有关的振荡相位与先前得到的一致,而每个封闭复合轨道的贡献幅度更加紧凑,并且与进行计算的Weyl-Wigner表示的任何特征无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy Transition Density of Driven Chaotic Systems: A Compound Trace Formula
Oscillations in the probability density of quantum transitions of the eigenstates of a chaotic Hamiltonian within classically narrow energy ranges have been shown to depend on closed compound orbits. These are formed by a pair of orbit segments, one in the energy shell of the original Hamiltonian and the other in the energy shell of the driven Hamiltonian, with endpoints that coincide. Viewed in the time domain, the same pair of trajectory segments arises in the semiclassical evaluation of the trace of a compound propagator: the product of the complex exponentials of the original Hamiltonian and of its driven image. It is shown here that the probability density is the double Fourier transform of this trace, and that the closed compound orbits emulate the role played by the periodic orbits in Gutzwiller’s trace formula in its semiclassical evaluation. The phase of the oscillations with the energies or the evolution parameters agree with those previously obtained, whereas the amplitude of the contribution of each closed compound orbit is more compact and independent of any feature of the Weyl–Wigner representation in which the calculation was carried out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Reports
Quantum Reports Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
3.30
自引率
0.00%
发文量
33
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信