连通和和$3$-流形上的闭测地线

IF 1.3 1区 数学 Q1 MATHEMATICS
H. Rademacher, I. Taimanov
{"title":"连通和和$3$-流形上的闭测地线","authors":"H. Rademacher, I. Taimanov","doi":"10.4310/jdg/1649953350","DOIUrl":null,"url":null,"abstract":"We study the asymptotics of the number N(t) of geometrically distinct closed geodesics of a Riemannian or Finsler metric on a connected sum of two compact manifolds of dimension at least three with non-trivial fundamental groups and apply this result to the prime decomposition of a three-manifold. In particular we show that the function N(t) grows at least like the prime numbers on a compact 3-manifold with infinite fundamental group. It follows that a generic Riemannian metric on a compact 3-manifold has infinitely many geometrically distinct closed geodesics. We also consider the case of a connected sum of a compact manifold with positive first Betti number and a simply-connected manifold which is not homeomorphic to a sphere.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Closed geodesics on connected sums and $3$-manifolds\",\"authors\":\"H. Rademacher, I. Taimanov\",\"doi\":\"10.4310/jdg/1649953350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the asymptotics of the number N(t) of geometrically distinct closed geodesics of a Riemannian or Finsler metric on a connected sum of two compact manifolds of dimension at least three with non-trivial fundamental groups and apply this result to the prime decomposition of a three-manifold. In particular we show that the function N(t) grows at least like the prime numbers on a compact 3-manifold with infinite fundamental group. It follows that a generic Riemannian metric on a compact 3-manifold has infinitely many geometrically distinct closed geodesics. We also consider the case of a connected sum of a compact manifold with positive first Betti number and a simply-connected manifold which is not homeomorphic to a sphere.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1649953350\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1649953350","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们研究了具有非平凡基群的两个维数至少为3的紧致流形的连通和上的黎曼或Finsler度量的几何上不同的闭测地线的个数N(t)的渐近性,并将这一结果应用于三流形的素分解。特别地,我们证明了函数N(t)至少像具有无限基群的紧致3-流形上的素数一样增长。因此,紧致3-流形上的一般黎曼度量具有无限多个几何上不同的闭测地线。我们还考虑了具有正第一Betti数的紧致流形和不同胚于球面的单连通流形的连通和的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closed geodesics on connected sums and $3$-manifolds
We study the asymptotics of the number N(t) of geometrically distinct closed geodesics of a Riemannian or Finsler metric on a connected sum of two compact manifolds of dimension at least three with non-trivial fundamental groups and apply this result to the prime decomposition of a three-manifold. In particular we show that the function N(t) grows at least like the prime numbers on a compact 3-manifold with infinite fundamental group. It follows that a generic Riemannian metric on a compact 3-manifold has infinitely many geometrically distinct closed geodesics. We also consider the case of a connected sum of a compact manifold with positive first Betti number and a simply-connected manifold which is not homeomorphic to a sphere.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信