V. Toufigh, Behnam Bagheri, R. Asadi, Amir Sadir, M. M. Toufigh
{"title":"压实石灰砂浆(CLM)柱性能的大型试验研究:含水率的影响","authors":"V. Toufigh, Behnam Bagheri, R. Asadi, Amir Sadir, M. M. Toufigh","doi":"10.7508/CEIJ.2018.02.007","DOIUrl":null,"url":null,"abstract":"Various materials have been utilized for ground improvement techniques based on geoenvironmental compatibility. The application of lime mortar in soil has been catching the attention of researchers and engineers. However, there is a lack of research on the variation of moisture content in soil affecting the mechanical behavior of lime mortar. In this study, large-scale laboratory tests were conducted on approximately thirty specimens to evaluate the size effect on stiffness and load bearing capacity of compacted lime mortar (CLM) columns and clayey soil under different saturation conditions. In addition, approximately forty small-scale laboratory tests were carried out on dry clay, dry CLM column and lime mortar specimens to evaluate the unconfined compressive strength (UCS). According to results, UCS of CLM column under small-scale condition was higher than that of the large-scale. Moreover, high moisture content had a significant influence on the stiffness of improved ground and the bearing capacity of CLM columns. Finally, validation of results indicated that numerical model predictions are in agreement with experimental results.","PeriodicalId":43959,"journal":{"name":"Civil Engineering Infrastructures Journal-CEIJ","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relatively Large-Scale Experimental Study on Behavior of Compacted Lime Mortar (CLM) Columns: Influence of Moisture Content\",\"authors\":\"V. Toufigh, Behnam Bagheri, R. Asadi, Amir Sadir, M. M. Toufigh\",\"doi\":\"10.7508/CEIJ.2018.02.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various materials have been utilized for ground improvement techniques based on geoenvironmental compatibility. The application of lime mortar in soil has been catching the attention of researchers and engineers. However, there is a lack of research on the variation of moisture content in soil affecting the mechanical behavior of lime mortar. In this study, large-scale laboratory tests were conducted on approximately thirty specimens to evaluate the size effect on stiffness and load bearing capacity of compacted lime mortar (CLM) columns and clayey soil under different saturation conditions. In addition, approximately forty small-scale laboratory tests were carried out on dry clay, dry CLM column and lime mortar specimens to evaluate the unconfined compressive strength (UCS). According to results, UCS of CLM column under small-scale condition was higher than that of the large-scale. Moreover, high moisture content had a significant influence on the stiffness of improved ground and the bearing capacity of CLM columns. Finally, validation of results indicated that numerical model predictions are in agreement with experimental results.\",\"PeriodicalId\":43959,\"journal\":{\"name\":\"Civil Engineering Infrastructures Journal-CEIJ\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering Infrastructures Journal-CEIJ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7508/CEIJ.2018.02.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Infrastructures Journal-CEIJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7508/CEIJ.2018.02.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Relatively Large-Scale Experimental Study on Behavior of Compacted Lime Mortar (CLM) Columns: Influence of Moisture Content
Various materials have been utilized for ground improvement techniques based on geoenvironmental compatibility. The application of lime mortar in soil has been catching the attention of researchers and engineers. However, there is a lack of research on the variation of moisture content in soil affecting the mechanical behavior of lime mortar. In this study, large-scale laboratory tests were conducted on approximately thirty specimens to evaluate the size effect on stiffness and load bearing capacity of compacted lime mortar (CLM) columns and clayey soil under different saturation conditions. In addition, approximately forty small-scale laboratory tests were carried out on dry clay, dry CLM column and lime mortar specimens to evaluate the unconfined compressive strength (UCS). According to results, UCS of CLM column under small-scale condition was higher than that of the large-scale. Moreover, high moisture content had a significant influence on the stiffness of improved ground and the bearing capacity of CLM columns. Finally, validation of results indicated that numerical model predictions are in agreement with experimental results.