在Roth型条件下,对偶性和中心Birkhoff和。

IF 1 4区 数学 Q1 MATHEMATICS
Asterisque Pub Date : 2019-01-26 DOI:10.24033/ast.11111
S. Marmi, C. Ulcigrai, J. Yoccoz
{"title":"在Roth型条件下,对偶性和中心Birkhoff和。","authors":"S. Marmi, C. Ulcigrai, J. Yoccoz","doi":"10.24033/ast.11111","DOIUrl":null,"url":null,"abstract":"We introduce two Diophantine conditions on rotation numbers of interval exchange maps (i.e.m) and translation surfaces: the \\emph{absolute Roth type condition} is a weakening of the notion of Roth type i.e.m., while the \\emph{dual Roth type} condition is a condition on the \\emph{backward} rotation number of a translation surface. We show that results on the cohomological equation previously proved in \\cite{MY} for restricted Roth type i.e.m. (on the solvability under finitely many obstructions and the regularity of the solutions) can be extended to restricted \\emph{absolute} Roth type i.e.m. Under the dual Roth type condition, we associate to a class of functions with \\emph{subpolynomial} deviations of ergodic averages (corresponding to relative homology classes) \\emph{distributional} limit shapes, which are constructed in a similar way to the \\emph{limit shapes} of Birkhoff sums associated in \\cite{MMY3} to functions which correspond to positive Lyapunov exponents.","PeriodicalId":55445,"journal":{"name":"Asterisque","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On Roth type conditions, duality and central Birkhoff sums for i.e.m.\",\"authors\":\"S. Marmi, C. Ulcigrai, J. Yoccoz\",\"doi\":\"10.24033/ast.11111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce two Diophantine conditions on rotation numbers of interval exchange maps (i.e.m) and translation surfaces: the \\\\emph{absolute Roth type condition} is a weakening of the notion of Roth type i.e.m., while the \\\\emph{dual Roth type} condition is a condition on the \\\\emph{backward} rotation number of a translation surface. We show that results on the cohomological equation previously proved in \\\\cite{MY} for restricted Roth type i.e.m. (on the solvability under finitely many obstructions and the regularity of the solutions) can be extended to restricted \\\\emph{absolute} Roth type i.e.m. Under the dual Roth type condition, we associate to a class of functions with \\\\emph{subpolynomial} deviations of ergodic averages (corresponding to relative homology classes) \\\\emph{distributional} limit shapes, which are constructed in a similar way to the \\\\emph{limit shapes} of Birkhoff sums associated in \\\\cite{MMY3} to functions which correspond to positive Lyapunov exponents.\",\"PeriodicalId\":55445,\"journal\":{\"name\":\"Asterisque\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asterisque\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24033/ast.11111\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asterisque","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/ast.11111","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

我们引入了两个关于区间交换映射(即m)和平移曲面的旋转数的Diophantine\emph{条件:绝对Roth型条件}是对Roth型概念的弱化,而\emph{对偶Roth型}条件是关于平移曲面的\emph{反向}旋转数的条件。我们证明了先前在\cite{MY}中证明的关于限制Roth型的上同调方程的结果(关于有限多障碍物下的可解性和解的正则性)可以推广到限制\emph{绝对}Roth型的结果。在对偶Roth型条件下,我们将一类函数与遍历平均的\emph{次多项式}偏差(对应于相对同调类)的\emph{分布}极限形状联系起来。它的构造方式类似于\cite{MMY3}中与Lyapunov指数对应的函数相关的Birkhoff和的\emph{极限形状}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Roth type conditions, duality and central Birkhoff sums for i.e.m.
We introduce two Diophantine conditions on rotation numbers of interval exchange maps (i.e.m) and translation surfaces: the \emph{absolute Roth type condition} is a weakening of the notion of Roth type i.e.m., while the \emph{dual Roth type} condition is a condition on the \emph{backward} rotation number of a translation surface. We show that results on the cohomological equation previously proved in \cite{MY} for restricted Roth type i.e.m. (on the solvability under finitely many obstructions and the regularity of the solutions) can be extended to restricted \emph{absolute} Roth type i.e.m. Under the dual Roth type condition, we associate to a class of functions with \emph{subpolynomial} deviations of ergodic averages (corresponding to relative homology classes) \emph{distributional} limit shapes, which are constructed in a similar way to the \emph{limit shapes} of Birkhoff sums associated in \cite{MMY3} to functions which correspond to positive Lyapunov exponents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asterisque
Asterisque MATHEMATICS-
CiteScore
2.90
自引率
0.00%
发文量
1
审稿时长
>12 weeks
期刊介绍: The publications part of the site of the French Mathematical Society (Société Mathématique de France - SMF) is bilingual English-French. You may visit the pages below to discover our list of journals and book collections. The institutional web site of the SMF (news, teaching activities, conference announcements...) is essentially written in French.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信