基于维纳混沌展开计算随机过程泛函期望的近似公式

IF 0.8 Q3 STATISTICS & PROBABILITY
A. Egorov
{"title":"基于维纳混沌展开计算随机过程泛函期望的近似公式","authors":"A. Egorov","doi":"10.1515/mcma-2020-2074","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we propose a new method for calculating the mathematical expectation of nonlinear functionals from random processes. The method is based on using Wiener chaos expansion and approximate formulas, exact for functional polynomials of given degree. Examples illustrating approximation accuracy are considered.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"26 1","pages":"285 - 292"},"PeriodicalIF":0.8000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mcma-2020-2074","citationCount":"1","resultStr":"{\"title\":\"An approximate formula for calculating the expectations of functionals from random processes based on using the Wiener chaos expansion\",\"authors\":\"A. Egorov\",\"doi\":\"10.1515/mcma-2020-2074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, we propose a new method for calculating the mathematical expectation of nonlinear functionals from random processes. The method is based on using Wiener chaos expansion and approximate formulas, exact for functional polynomials of given degree. Examples illustrating approximation accuracy are considered.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"26 1\",\"pages\":\"285 - 292\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/mcma-2020-2074\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2020-2074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2020-2074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

摘要在这项工作中,我们提出了一种从随机过程中计算非线性泛函的数学期望的新方法。该方法基于维纳混沌展开和近似公式,对给定次数的函数多项式是精确的。考虑了说明近似精度的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approximate formula for calculating the expectations of functionals from random processes based on using the Wiener chaos expansion
Abstract In this work, we propose a new method for calculating the mathematical expectation of nonlinear functionals from random processes. The method is based on using Wiener chaos expansion and approximate formulas, exact for functional polynomials of given degree. Examples illustrating approximation accuracy are considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信