SKA脉冲星搜索管道的机器学习方法研究

IF 1.1 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Shashank Sanjay Bhat, Thiagaraj Prabu, Ben Stappers, Atul Ghalame, Snehanshu Saha, T. S. B Sudarshan, Zafiirah Hosenie
{"title":"SKA脉冲星搜索管道的机器学习方法研究","authors":"Shashank Sanjay Bhat,&nbsp;Thiagaraj Prabu,&nbsp;Ben Stappers,&nbsp;Atul Ghalame,&nbsp;Snehanshu Saha,&nbsp;T. S. B Sudarshan,&nbsp;Zafiirah Hosenie","doi":"10.1007/s12036-023-09920-4","DOIUrl":null,"url":null,"abstract":"<div><p>The SKA pulsar search pipeline will be used for real time detection of pulsars. Modern radio telescopes, such as SKA will be generating petabytes of data in their full scale of operation. Hence, experience-based and data-driven algorithms are being investigated for applications, such as candidate detection. Here, we describe our findings from testing a state of the art object detection algorithm called Mask R-CNN to detect candidate signatures in the SKA pulsar search pipeline. We have trained the Mask R-CNN model to detect candidate images. A custom semi-auto annotation tool was developed and investigated to rapidly mark the regions of interest in large datasets. We have used a simulation dataset to train and build the candidate detection algorithm. A more detailed analysis is planned. This paper presents details of this initial investigation highlighting the future prospects.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"44 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Investigation of a Machine learning methodology for the SKA pulsar search pipeline\",\"authors\":\"Shashank Sanjay Bhat,&nbsp;Thiagaraj Prabu,&nbsp;Ben Stappers,&nbsp;Atul Ghalame,&nbsp;Snehanshu Saha,&nbsp;T. S. B Sudarshan,&nbsp;Zafiirah Hosenie\",\"doi\":\"10.1007/s12036-023-09920-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The SKA pulsar search pipeline will be used for real time detection of pulsars. Modern radio telescopes, such as SKA will be generating petabytes of data in their full scale of operation. Hence, experience-based and data-driven algorithms are being investigated for applications, such as candidate detection. Here, we describe our findings from testing a state of the art object detection algorithm called Mask R-CNN to detect candidate signatures in the SKA pulsar search pipeline. We have trained the Mask R-CNN model to detect candidate images. A custom semi-auto annotation tool was developed and investigated to rapidly mark the regions of interest in large datasets. We have used a simulation dataset to train and build the candidate detection algorithm. A more detailed analysis is planned. This paper presents details of this initial investigation highlighting the future prospects.</p></div>\",\"PeriodicalId\":610,\"journal\":{\"name\":\"Journal of Astrophysics and Astronomy\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astrophysics and Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12036-023-09920-4\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astrophysics and Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12036-023-09920-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 2

摘要

SKA脉冲星搜索管道将用于实时探测脉冲星。现代射电望远镜,如SKA,在其全面运行时将产生pb级的数据。因此,基于经验和数据驱动的算法正在研究应用,例如候选检测。在这里,我们描述了我们通过测试一种称为掩码R-CNN的最先进的目标检测算法来检测SKA脉冲星搜索管道中的候选特征的发现。我们训练了Mask R-CNN模型来检测候选图像。开发并研究了一种自定义半自动标注工具,用于快速标记大型数据集中感兴趣的区域。我们使用模拟数据集来训练和构建候选检测算法。计划进行更详细的分析。本文介绍了这一初步调查的细节,并强调了未来的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigation of a Machine learning methodology for the SKA pulsar search pipeline

Investigation of a Machine learning methodology for the SKA pulsar search pipeline

The SKA pulsar search pipeline will be used for real time detection of pulsars. Modern radio telescopes, such as SKA will be generating petabytes of data in their full scale of operation. Hence, experience-based and data-driven algorithms are being investigated for applications, such as candidate detection. Here, we describe our findings from testing a state of the art object detection algorithm called Mask R-CNN to detect candidate signatures in the SKA pulsar search pipeline. We have trained the Mask R-CNN model to detect candidate images. A custom semi-auto annotation tool was developed and investigated to rapidly mark the regions of interest in large datasets. We have used a simulation dataset to train and build the candidate detection algorithm. A more detailed analysis is planned. This paper presents details of this initial investigation highlighting the future prospects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Astrophysics and Astronomy
Journal of Astrophysics and Astronomy 地学天文-天文与天体物理
CiteScore
1.80
自引率
9.10%
发文量
84
审稿时长
>12 weeks
期刊介绍: The journal publishes original research papers on all aspects of astrophysics and astronomy, including instrumentation, laboratory astrophysics, and cosmology. Critical reviews of topical fields are also published. Articles submitted as letters will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信