Sobolev空间H^{s}$上一类半经典傅里叶积分算子的有界性

Q3 Mathematics
O. F. Aid, A. Senoussaoui
{"title":"Sobolev空间H^{s}$上一类半经典傅里叶积分算子的有界性","authors":"O. F. Aid, A. Senoussaoui","doi":"10.30970/ms.56.1.61-66","DOIUrl":null,"url":null,"abstract":"We introduce the relevant background information thatwill be used throughout the paper.Following that, we will go over some fundamental concepts from thetheory of a particular class of semiclassical Fourier integraloperators (symbols and phase functions), which will serve as thestarting point for our main goal. \nFurthermore, these integral operators turn out to be bounded on$S\\left(\\mathbb{R}^{n}\\right)$ the space of rapidly decreasingfunctions (or Schwartz space) and its dual$S^{\\prime}\\left(\\mathbb{R}^{n}\\right)$ the space of temperatedistributions. \nMoreover, we will give a brief introduction about$H^s(\\mathbb{R}^n)$ Sobolev space (with $s\\in\\mathbb{R}$).Results about the composition of semiclassical Fourier integraloperators with its $L^{2}$-adjoint are proved. These allow to obtainresults about the boundedness on the Sobolev spaces$H^s(\\mathbb{R}^n)$.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The boundedness of a class of semiclassical Fourier integral operators on Sobolev space $H^{s}$\",\"authors\":\"O. F. Aid, A. Senoussaoui\",\"doi\":\"10.30970/ms.56.1.61-66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the relevant background information thatwill be used throughout the paper.Following that, we will go over some fundamental concepts from thetheory of a particular class of semiclassical Fourier integraloperators (symbols and phase functions), which will serve as thestarting point for our main goal. \\nFurthermore, these integral operators turn out to be bounded on$S\\\\left(\\\\mathbb{R}^{n}\\\\right)$ the space of rapidly decreasingfunctions (or Schwartz space) and its dual$S^{\\\\prime}\\\\left(\\\\mathbb{R}^{n}\\\\right)$ the space of temperatedistributions. \\nMoreover, we will give a brief introduction about$H^s(\\\\mathbb{R}^n)$ Sobolev space (with $s\\\\in\\\\mathbb{R}$).Results about the composition of semiclassical Fourier integraloperators with its $L^{2}$-adjoint are proved. These allow to obtainresults about the boundedness on the Sobolev spaces$H^s(\\\\mathbb{R}^n)$.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.56.1.61-66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.56.1.61-66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们将介绍相关的背景信息,这些信息将在整个论文中使用。接下来,我们将讨论一类特定的半经典傅立叶积分算子(符号和相位函数)理论中的一些基本概念,这些概念将作为我们主要目标的起点。此外,这些积分算子在快速递减函数空间(或Schwartz空间)的$S\left(\mathbb{R}^{n}\right)$和其对偶温度分布空间的$S^{\prime}\left(\ mathbb{R}^{n}\right)$上是有界的。此外,我们还将简要地介绍$H^s(\mathbb{R}^n)$Sobolev空间(带有$s\in\mathbb{R}$).证明了具有$L^{2}$伴随的半经典傅立叶积分算子的组成结果。这些结果允许得到关于Sobolev空间$H^s(\mathbb{R}^n)$上有界性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The boundedness of a class of semiclassical Fourier integral operators on Sobolev space $H^{s}$
We introduce the relevant background information thatwill be used throughout the paper.Following that, we will go over some fundamental concepts from thetheory of a particular class of semiclassical Fourier integraloperators (symbols and phase functions), which will serve as thestarting point for our main goal. Furthermore, these integral operators turn out to be bounded on$S\left(\mathbb{R}^{n}\right)$ the space of rapidly decreasingfunctions (or Schwartz space) and its dual$S^{\prime}\left(\mathbb{R}^{n}\right)$ the space of temperatedistributions. Moreover, we will give a brief introduction about$H^s(\mathbb{R}^n)$ Sobolev space (with $s\in\mathbb{R}$).Results about the composition of semiclassical Fourier integraloperators with its $L^{2}$-adjoint are proved. These allow to obtainresults about the boundedness on the Sobolev spaces$H^s(\mathbb{R}^n)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信