T. Jejkal, Sabrine Chelbi, A. Pfeil, P. Wittenburg
{"title":"规范工作流中包装技术应用可能性的评估","authors":"T. Jejkal, Sabrine Chelbi, A. Pfeil, P. Wittenburg","doi":"10.1162/dint_a_00137","DOIUrl":null,"url":null,"abstract":"Abstract In Canonical Workflow Framework for Research (CWFR) “packages” are relevant in two different directions. In data science, workflows are in general being executed on a set of files which have been aggregated for specific purposes, such as for training a model in deep learning. We call this type of “package” a data collection and its aggregation and metadata description is motivated by research interests. The other type of “packages” relevant for CWFR are supposed to represent workflows in a self-describing and self-contained way for later execution. In this paper, we will review different packaging technologies and investigate their usability in the context of CWFR. For this purpose, we draw on an exemplary use case and show how packaging technologies can support its realization. We conclude that packaging technologies of different flavors help on providing inputs and outputs for workflow steps in a machine-readable way, as well as on representing a workflow and all its artifacts in a self-describing and self-contained way.","PeriodicalId":34023,"journal":{"name":"Data Intelligence","volume":"4 1","pages":"372-385"},"PeriodicalIF":1.3000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Application Possibilities for Packaging Technologies in Canonical Workflows\",\"authors\":\"T. Jejkal, Sabrine Chelbi, A. Pfeil, P. Wittenburg\",\"doi\":\"10.1162/dint_a_00137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In Canonical Workflow Framework for Research (CWFR) “packages” are relevant in two different directions. In data science, workflows are in general being executed on a set of files which have been aggregated for specific purposes, such as for training a model in deep learning. We call this type of “package” a data collection and its aggregation and metadata description is motivated by research interests. The other type of “packages” relevant for CWFR are supposed to represent workflows in a self-describing and self-contained way for later execution. In this paper, we will review different packaging technologies and investigate their usability in the context of CWFR. For this purpose, we draw on an exemplary use case and show how packaging technologies can support its realization. We conclude that packaging technologies of different flavors help on providing inputs and outputs for workflow steps in a machine-readable way, as well as on representing a workflow and all its artifacts in a self-describing and self-contained way.\",\"PeriodicalId\":34023,\"journal\":{\"name\":\"Data Intelligence\",\"volume\":\"4 1\",\"pages\":\"372-385\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/dint_a_00137\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/dint_a_00137","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Evaluation of Application Possibilities for Packaging Technologies in Canonical Workflows
Abstract In Canonical Workflow Framework for Research (CWFR) “packages” are relevant in two different directions. In data science, workflows are in general being executed on a set of files which have been aggregated for specific purposes, such as for training a model in deep learning. We call this type of “package” a data collection and its aggregation and metadata description is motivated by research interests. The other type of “packages” relevant for CWFR are supposed to represent workflows in a self-describing and self-contained way for later execution. In this paper, we will review different packaging technologies and investigate their usability in the context of CWFR. For this purpose, we draw on an exemplary use case and show how packaging technologies can support its realization. We conclude that packaging technologies of different flavors help on providing inputs and outputs for workflow steps in a machine-readable way, as well as on representing a workflow and all its artifacts in a self-describing and self-contained way.