关于Minkowski 3-空间E1中的类时间扫掠曲面和奇异性

Q3 Mathematics
N. Alluhaibi, R. Abdel-Baky, Monia Naghi
{"title":"关于Minkowski 3-空间E1中的类时间扫掠曲面和奇异性","authors":"N. Alluhaibi, R. Abdel-Baky, Monia Naghi","doi":"10.1155/2022/9121239","DOIUrl":null,"url":null,"abstract":"The Bishop frame or rotation minimizing frame (RMF) is an alternative approach to define a moving frame that is well defined even when the curve has vanished second derivative, and it has been widely used in the areas of computer graphics, engineering, and biology. The main aim of this paper is using the RMF for classification of singularity type of timelike sweeping surface and Bishop spherical Darboux image which is mightily concerning a unit speed spacelike curve with timelike binormal vector in \n \n \n \n E\n \n \n 1\n \n \n 3\n \n \n \n .","PeriodicalId":7061,"journal":{"name":"Abstract and Applied Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Timelike Sweeping Surfaces and Singularities in Minkowski 3-Space \\n \\n \\n E\\n \\n \\n 1\\n \\n \\n \",\"authors\":\"N. Alluhaibi, R. Abdel-Baky, Monia Naghi\",\"doi\":\"10.1155/2022/9121239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Bishop frame or rotation minimizing frame (RMF) is an alternative approach to define a moving frame that is well defined even when the curve has vanished second derivative, and it has been widely used in the areas of computer graphics, engineering, and biology. The main aim of this paper is using the RMF for classification of singularity type of timelike sweeping surface and Bishop spherical Darboux image which is mightily concerning a unit speed spacelike curve with timelike binormal vector in \\n \\n \\n \\n E\\n \\n \\n 1\\n \\n \\n 3\\n \\n \\n \\n .\",\"PeriodicalId\":7061,\"journal\":{\"name\":\"Abstract and Applied Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstract and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/9121239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/9121239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

Bishop框架或旋转最小化框架(RMF)是一种定义运动框架的替代方法,即使曲线已经消失二阶导数,它也被很好地定义,并且它已经被广泛应用于计算机图形学、工程和生物学领域。本文的主要目的是利用RMF对类时间扫掠表面的奇异型和强烈涉及E13中具有类时间双法线向量的单位速度类空间曲线的Bishop球面Darboux图像进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Timelike Sweeping Surfaces and Singularities in Minkowski 3-Space E 1
The Bishop frame or rotation minimizing frame (RMF) is an alternative approach to define a moving frame that is well defined even when the curve has vanished second derivative, and it has been widely used in the areas of computer graphics, engineering, and biology. The main aim of this paper is using the RMF for classification of singularity type of timelike sweeping surface and Bishop spherical Darboux image which is mightily concerning a unit speed spacelike curve with timelike binormal vector in E 1 3 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
36
审稿时长
3.5 months
期刊介绍: Abstract and Applied Analysis is a mathematical journal devoted exclusively to the publication of high-quality research papers in the fields of abstract and applied analysis. Emphasis is placed on important developments in classical analysis, linear and nonlinear functional analysis, ordinary and partial differential equations, optimization theory, and control theory. Abstract and Applied Analysis supports the publication of original material involving the complete solution of significant problems in the above disciplines. Abstract and Applied Analysis also encourages the publication of timely and thorough survey articles on current trends in the theory and applications of analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信