Liesbeth M. Dingemans, Vassilis M. Papadakis, Ping Liu, Aurèle J. L. Adam, Roger M. Groves
{"title":"利用系数无关的高光谱散射模型定量测定涂层厚度","authors":"Liesbeth M. Dingemans, Vassilis M. Papadakis, Ping Liu, Aurèle J. L. Adam, Roger M. Groves","doi":"10.1186/s41476-017-0068-2","DOIUrl":null,"url":null,"abstract":"<p>Hyperspectral imaging is a technique that enables the mapping of spectral signatures across a surface. It is most commonly used for surface chemical mapping in fields as diverse as satellite remote sensing, biomedical imaging and heritage science. Existing models, such as the Kubelka-Munk theory and the Lambert-Beer law also relate layer thickness with absorption, and in the case of the Kubelka-Munk theory scattering, however they are not able to fully describe the complex behavior of the light-layer interaction.</p><p>This paper describes a new approach for hyperspectral imaging, the mapping of coating surface thickness using a coefficient-independent scattering model. The approach taken in this paper is to model the absorption and scattering behavior using a developed coefficient-independent model, calibrated using reference sample thickness measurements performed with optical coherence tomography.</p><p>The results show that this new model, by considering the spectral variation that can be recorded by the hyperspectral imaging camera, is able to measure coatings of 250 μm thickness with an accuracy of 11 μm in a fast and repeatable way.</p><p>The new coefficient-independent scattering model presented can successfully measure the thickness of coatings from hyperspectral imaging data.</p>","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":"13 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2017-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41476-017-0068-2","citationCount":"6","resultStr":"{\"title\":\"Quantitative coating thickness determination using a coefficient-independent hyperspectral scattering model\",\"authors\":\"Liesbeth M. Dingemans, Vassilis M. Papadakis, Ping Liu, Aurèle J. L. Adam, Roger M. Groves\",\"doi\":\"10.1186/s41476-017-0068-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hyperspectral imaging is a technique that enables the mapping of spectral signatures across a surface. It is most commonly used for surface chemical mapping in fields as diverse as satellite remote sensing, biomedical imaging and heritage science. Existing models, such as the Kubelka-Munk theory and the Lambert-Beer law also relate layer thickness with absorption, and in the case of the Kubelka-Munk theory scattering, however they are not able to fully describe the complex behavior of the light-layer interaction.</p><p>This paper describes a new approach for hyperspectral imaging, the mapping of coating surface thickness using a coefficient-independent scattering model. The approach taken in this paper is to model the absorption and scattering behavior using a developed coefficient-independent model, calibrated using reference sample thickness measurements performed with optical coherence tomography.</p><p>The results show that this new model, by considering the spectral variation that can be recorded by the hyperspectral imaging camera, is able to measure coatings of 250 μm thickness with an accuracy of 11 μm in a fast and repeatable way.</p><p>The new coefficient-independent scattering model presented can successfully measure the thickness of coatings from hyperspectral imaging data.</p>\",\"PeriodicalId\":674,\"journal\":{\"name\":\"Journal of the European Optical Society-Rapid Publications\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2017-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s41476-017-0068-2\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Optical Society-Rapid Publications\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41476-017-0068-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s41476-017-0068-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Quantitative coating thickness determination using a coefficient-independent hyperspectral scattering model
Hyperspectral imaging is a technique that enables the mapping of spectral signatures across a surface. It is most commonly used for surface chemical mapping in fields as diverse as satellite remote sensing, biomedical imaging and heritage science. Existing models, such as the Kubelka-Munk theory and the Lambert-Beer law also relate layer thickness with absorption, and in the case of the Kubelka-Munk theory scattering, however they are not able to fully describe the complex behavior of the light-layer interaction.
This paper describes a new approach for hyperspectral imaging, the mapping of coating surface thickness using a coefficient-independent scattering model. The approach taken in this paper is to model the absorption and scattering behavior using a developed coefficient-independent model, calibrated using reference sample thickness measurements performed with optical coherence tomography.
The results show that this new model, by considering the spectral variation that can be recorded by the hyperspectral imaging camera, is able to measure coatings of 250 μm thickness with an accuracy of 11 μm in a fast and repeatable way.
The new coefficient-independent scattering model presented can successfully measure the thickness of coatings from hyperspectral imaging data.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.