非线性Dirac-Klein-Gordon系统半经典解的多重性和集中性

IF 2.1 2区 数学 Q1 MATHEMATICS
Yanheng Ding, Yuanyang Yu, Xiaojing Dong
{"title":"非线性Dirac-Klein-Gordon系统半经典解的多重性和集中性","authors":"Yanheng Ding, Yuanyang Yu, Xiaojing Dong","doi":"10.1515/ans-2022-0011","DOIUrl":null,"url":null,"abstract":"Abstract In the present article, we study multiplicity of semi-classical solutions of a Yukawa-coupled massive Dirac-Klein-Gordon system with the general nonlinear self-coupling, which is either subcritical or critical growth. The number of solutions obtained is described by the ratio of maximum and behavior at infinity of the potentials. We use the variational method that relies upon a delicate cutting off technique. It allows us to overcome the lack of convexity of the nonlinearities.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"22 1","pages":"248 - 272"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicity and concentration of semi-classical solutions to nonlinear Dirac-Klein-Gordon systems\",\"authors\":\"Yanheng Ding, Yuanyang Yu, Xiaojing Dong\",\"doi\":\"10.1515/ans-2022-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present article, we study multiplicity of semi-classical solutions of a Yukawa-coupled massive Dirac-Klein-Gordon system with the general nonlinear self-coupling, which is either subcritical or critical growth. The number of solutions obtained is described by the ratio of maximum and behavior at infinity of the potentials. We use the variational method that relies upon a delicate cutting off technique. It allows us to overcome the lack of convexity of the nonlinearities.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"22 1\",\"pages\":\"248 - 272\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2022-0011\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0011","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了具有一般非线性自耦的Yukawa耦合大质量Dirac-Clain-Gordon系统的多重半经典解,该系统是亚临界或临界增长的。所获得的解的数量由电势的最大值和无穷大处的行为之比来描述。我们使用的变分方法依赖于一个微妙的切断技术。它使我们能够克服非线性的凸性不足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicity and concentration of semi-classical solutions to nonlinear Dirac-Klein-Gordon systems
Abstract In the present article, we study multiplicity of semi-classical solutions of a Yukawa-coupled massive Dirac-Klein-Gordon system with the general nonlinear self-coupling, which is either subcritical or critical growth. The number of solutions obtained is described by the ratio of maximum and behavior at infinity of the potentials. We use the variational method that relies upon a delicate cutting off technique. It allows us to overcome the lack of convexity of the nonlinearities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信