{"title":"在神经元离子通道研究中使用荧光钙指示剂","authors":"B. Çiğ","doi":"10.37212/JCNOS.584674","DOIUrl":null,"url":null,"abstract":"Calcium ion (Ca2+) is the most prominent secondary messenger of physiological cellular signals and ion channels research (Moeder et al. 2019). Neurotransmission, muscle contraction and fertilization are only a few of the physiological properties that make calcium ion important in most eukaryotic cells (Pharris et al. 2018). The extracellular calcium concentration is 1-3 mM whereas the intracellular concentration is around 80-100 nM. This tremendous difference is tightly controlled by dozens of different ion channels embedded in the membrane (Van Hook et al. 2019). Activation of these channels causes calcium ions to entry into the cell with density gradient. This produce the calcium signal. It is very important to control that prolonged elevation of intracellular calcium concentration due to channelopathies in ion channels due to various nervous system diseases because it activates caspase cascades leading to permanent damage and apoptosis. In this respect, the calcium indicators are unrivaled in terms of taking clear results by photographing all the points in these steps from the stage they were developed to the final stages. The use of these indicators to address the roles of these ion channels in terms of their contribution to the pathogenesis of neurological diseases has been an indispensible method of molecular analysis in recent years (Xu and Dong, 2019). In this presentation, we will discuss the chemical structures of calcium indicators, their contribution to the examination of cellular signaling pathways, their advantages and disadvantages in the investigation of ion channels in neurological diseases.","PeriodicalId":37782,"journal":{"name":"Journal of Cellular Neuroscience and Oxidative Stress","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using fluorescent calcium indicators in neuronal ion channel studies\",\"authors\":\"B. Çiğ\",\"doi\":\"10.37212/JCNOS.584674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calcium ion (Ca2+) is the most prominent secondary messenger of physiological cellular signals and ion channels research (Moeder et al. 2019). Neurotransmission, muscle contraction and fertilization are only a few of the physiological properties that make calcium ion important in most eukaryotic cells (Pharris et al. 2018). The extracellular calcium concentration is 1-3 mM whereas the intracellular concentration is around 80-100 nM. This tremendous difference is tightly controlled by dozens of different ion channels embedded in the membrane (Van Hook et al. 2019). Activation of these channels causes calcium ions to entry into the cell with density gradient. This produce the calcium signal. It is very important to control that prolonged elevation of intracellular calcium concentration due to channelopathies in ion channels due to various nervous system diseases because it activates caspase cascades leading to permanent damage and apoptosis. In this respect, the calcium indicators are unrivaled in terms of taking clear results by photographing all the points in these steps from the stage they were developed to the final stages. The use of these indicators to address the roles of these ion channels in terms of their contribution to the pathogenesis of neurological diseases has been an indispensible method of molecular analysis in recent years (Xu and Dong, 2019). In this presentation, we will discuss the chemical structures of calcium indicators, their contribution to the examination of cellular signaling pathways, their advantages and disadvantages in the investigation of ion channels in neurological diseases.\",\"PeriodicalId\":37782,\"journal\":{\"name\":\"Journal of Cellular Neuroscience and Oxidative Stress\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Neuroscience and Oxidative Stress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37212/JCNOS.584674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Neuroscience and Oxidative Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37212/JCNOS.584674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
摘要
钙离子(Ca2+)是生理细胞信号和离子通道研究中最突出的次级信使(Moeder et al. 2019)。神经传递、肌肉收缩和受精只是使钙离子在大多数真核细胞中发挥重要作用的几个生理特性(Pharris et al. 2018)。细胞外钙浓度为1-3 mM,而细胞内钙浓度约为80-100 nM。这种巨大的差异受到嵌入膜中的数十种不同离子通道的严格控制(Van Hook et al. 2019)。这些通道的激活导致钙离子以密度梯度进入细胞。这就产生了钙信号。控制由各种神经系统疾病引起的离子通道病变引起的细胞内钙浓度的长期升高是非常重要的,因为它激活了caspase级联反应,导致永久性损伤和细胞凋亡。在这方面,钙指标是无与伦比的,因为它通过拍摄从开发阶段到最后阶段的这些步骤中的所有点来获得清晰的结果。近年来,利用这些指标来解决这些离子通道在神经系统疾病发病机制中的作用已成为分子分析不可或缺的方法(Xu and Dong, 2019)。在本次演讲中,我们将讨论钙指示剂的化学结构,它们对细胞信号通路检测的贡献,以及它们在神经系统疾病离子通道研究中的优缺点。
Using fluorescent calcium indicators in neuronal ion channel studies
Calcium ion (Ca2+) is the most prominent secondary messenger of physiological cellular signals and ion channels research (Moeder et al. 2019). Neurotransmission, muscle contraction and fertilization are only a few of the physiological properties that make calcium ion important in most eukaryotic cells (Pharris et al. 2018). The extracellular calcium concentration is 1-3 mM whereas the intracellular concentration is around 80-100 nM. This tremendous difference is tightly controlled by dozens of different ion channels embedded in the membrane (Van Hook et al. 2019). Activation of these channels causes calcium ions to entry into the cell with density gradient. This produce the calcium signal. It is very important to control that prolonged elevation of intracellular calcium concentration due to channelopathies in ion channels due to various nervous system diseases because it activates caspase cascades leading to permanent damage and apoptosis. In this respect, the calcium indicators are unrivaled in terms of taking clear results by photographing all the points in these steps from the stage they were developed to the final stages. The use of these indicators to address the roles of these ion channels in terms of their contribution to the pathogenesis of neurological diseases has been an indispensible method of molecular analysis in recent years (Xu and Dong, 2019). In this presentation, we will discuss the chemical structures of calcium indicators, their contribution to the examination of cellular signaling pathways, their advantages and disadvantages in the investigation of ion channels in neurological diseases.
期刊介绍:
Journal of Cellular Neuroscience and Oxidative Stress isan online journal that publishes original research articles, reviews and short reviews on themolecular basisofbiophysical,physiological and pharmacological processes thatregulate cellular function, and the control or alteration of these processesby theaction of receptors, neurotransmitters, second messengers, cation, anions,drugsor disease. Areas of particular interest are four topics. They are; 1. Ion Channels (Na+-K+Channels, Cl– channels, Ca2+channels, ADP-Ribose and metabolism of NAD+,Patch-Clamp applications) 2. Oxidative Stress (Antioxidant vitamins, antioxidant enzymes, metabolism of nitric oxide, oxidative stress, biophysics, biochemistry and physiology of free oxygen radicals) 3. Interaction Between Oxidative Stress and Ion Channels in Neuroscience (Effects of the oxidative stress on the activation of the voltage sensitive cation channels, effect of ADP-Ribose and NAD+ on activation of the cation channels which are sensitive to voltage, effect of the oxidative stress on activation of the TRP channels in neurodegenerative diseases such Parkinson’s and Alzheimer’s diseases) 4. Gene and Oxidative Stress (Gene abnormalities. Interaction between gene and free radicals. Gene anomalies and iron. Role of radiation and cancer on gene polymorphism)