挤压三维打印机用纤维素-壳聚糖水凝胶的制备及流变特性

Q4 Earth and Planetary Sciences
Gerardo Martin Quindoza, Patrick Aldwin Castillo, Jill Z. Manapat, John Kenneth Cruz
{"title":"挤压三维打印机用纤维素-壳聚糖水凝胶的制备及流变特性","authors":"Gerardo Martin Quindoza, Patrick Aldwin Castillo, Jill Z. Manapat, John Kenneth Cruz","doi":"10.11113/aej.v12.17440","DOIUrl":null,"url":null,"abstract":"The application of three-dimensional (3D) printing in tissue engineering is becoming prominent nowadays. A big obstacle for this technology is the selection of proper ink material. Chitosan hydrogel is an established biocompatible material that can be used as tissue scaffolds, and it has the rheology necessary for processing via extrusion type 3D printer. However, chitosan still has degradation and swelling limitations. Hence, chitosan hydrogel blends were incorporated with cellulose particles and were prepared as ink material. The hydrogels were successfully synthesized via thermo-responsive sol-gel method. Fourier transform infrared spectroscopy (FT-IR) analysis showed that the gelation of hydrogels formed a semi-interpenetrating network of ionically crosslinked chitosan and cellulose particles. Rheological tests have shown that the hydrogels exhibited shear thinning property necessary for printing. However, high cellulose amounts caused clogging during printing, and the presence of water limited the structural rigidity of the printed product. Besides this, it was found that the addition of cellulose was able to increase swelling, decrease degradation rate, and decrease gelation time, but the effect is not significant for any of these three properties.","PeriodicalId":36749,"journal":{"name":"ASEAN Engineering Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PREPARATION AND RHEOLOGICAL CHARACTERIZATION OF CELLULOSE-CHITOSAN HYDROGEL FOR EXTRUSION 3D PRINTER\",\"authors\":\"Gerardo Martin Quindoza, Patrick Aldwin Castillo, Jill Z. Manapat, John Kenneth Cruz\",\"doi\":\"10.11113/aej.v12.17440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of three-dimensional (3D) printing in tissue engineering is becoming prominent nowadays. A big obstacle for this technology is the selection of proper ink material. Chitosan hydrogel is an established biocompatible material that can be used as tissue scaffolds, and it has the rheology necessary for processing via extrusion type 3D printer. However, chitosan still has degradation and swelling limitations. Hence, chitosan hydrogel blends were incorporated with cellulose particles and were prepared as ink material. The hydrogels were successfully synthesized via thermo-responsive sol-gel method. Fourier transform infrared spectroscopy (FT-IR) analysis showed that the gelation of hydrogels formed a semi-interpenetrating network of ionically crosslinked chitosan and cellulose particles. Rheological tests have shown that the hydrogels exhibited shear thinning property necessary for printing. However, high cellulose amounts caused clogging during printing, and the presence of water limited the structural rigidity of the printed product. Besides this, it was found that the addition of cellulose was able to increase swelling, decrease degradation rate, and decrease gelation time, but the effect is not significant for any of these three properties.\",\"PeriodicalId\":36749,\"journal\":{\"name\":\"ASEAN Engineering Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASEAN Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/aej.v12.17440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEAN Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/aej.v12.17440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

三维打印技术在组织工程中的应用日益突出。该技术的一大障碍是墨水材料的选择。壳聚糖水凝胶是一种成熟的生物相容性材料,可以用作组织支架,并且具有通过挤压式3D打印机加工所必需的流变性。然而,壳聚糖仍有降解和膨胀的局限性。因此,将壳聚糖水凝胶混合物与纤维素颗粒掺入,制备成油墨材料。采用热敏溶胶-凝胶法成功合成了水凝胶。傅里叶变换红外光谱(FT-IR)分析表明,凝胶形成了壳聚糖和纤维素离子交联的半互穿网络。流变学试验表明,水凝胶表现出剪切减薄的性质,这是印刷所必需的。然而,高纤维素量在印刷过程中造成堵塞,水的存在限制了印刷产品的结构刚性。此外,还发现纤维素的加入可以增加膨胀,降低降解速率,缩短凝胶时间,但对这三项性能的影响都不显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PREPARATION AND RHEOLOGICAL CHARACTERIZATION OF CELLULOSE-CHITOSAN HYDROGEL FOR EXTRUSION 3D PRINTER
The application of three-dimensional (3D) printing in tissue engineering is becoming prominent nowadays. A big obstacle for this technology is the selection of proper ink material. Chitosan hydrogel is an established biocompatible material that can be used as tissue scaffolds, and it has the rheology necessary for processing via extrusion type 3D printer. However, chitosan still has degradation and swelling limitations. Hence, chitosan hydrogel blends were incorporated with cellulose particles and were prepared as ink material. The hydrogels were successfully synthesized via thermo-responsive sol-gel method. Fourier transform infrared spectroscopy (FT-IR) analysis showed that the gelation of hydrogels formed a semi-interpenetrating network of ionically crosslinked chitosan and cellulose particles. Rheological tests have shown that the hydrogels exhibited shear thinning property necessary for printing. However, high cellulose amounts caused clogging during printing, and the presence of water limited the structural rigidity of the printed product. Besides this, it was found that the addition of cellulose was able to increase swelling, decrease degradation rate, and decrease gelation time, but the effect is not significant for any of these three properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ASEAN Engineering Journal
ASEAN Engineering Journal Engineering-Engineering (all)
CiteScore
0.60
自引率
0.00%
发文量
75
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信