{"title":"分数阶泛函与非线性分数阶q-微分方程组的吸引性与全局吸引性","authors":"M. Samei, G. K. Ranjbar, D. N. Susahab","doi":"10.30495/JME.V15I0.1342","DOIUrl":null,"url":null,"abstract":"In the current work, we present some innovative solutions for the attractivity of fractional functional q-differential equations involving Caputo fractional q-derivative in a $k$-dimensional system, by using some fixed point principle and the standard Schauder's fixed point theorem. Likewise, we look into the global attractivity of fractional q-differential equations involving classical Riemann-Liouville fractional q-derivative in a $k$-dimensional system, by employing the famous fixed point theorem of Krasnoselskii. Also, we must note that, this paper is mainly on the analysis of the model, with numerics used only to verify the analysis for checking the attractivity and global attractivity of solutions in the system. Lastly, we give two examples to illustrate our main results.","PeriodicalId":43745,"journal":{"name":"Journal of Mathematical Extension","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attractivity and global attractivity for system of fractional functional and nonlinear fractional q-differential equations\",\"authors\":\"M. Samei, G. K. Ranjbar, D. N. Susahab\",\"doi\":\"10.30495/JME.V15I0.1342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current work, we present some innovative solutions for the attractivity of fractional functional q-differential equations involving Caputo fractional q-derivative in a $k$-dimensional system, by using some fixed point principle and the standard Schauder's fixed point theorem. Likewise, we look into the global attractivity of fractional q-differential equations involving classical Riemann-Liouville fractional q-derivative in a $k$-dimensional system, by employing the famous fixed point theorem of Krasnoselskii. Also, we must note that, this paper is mainly on the analysis of the model, with numerics used only to verify the analysis for checking the attractivity and global attractivity of solutions in the system. Lastly, we give two examples to illustrate our main results.\",\"PeriodicalId\":43745,\"journal\":{\"name\":\"Journal of Mathematical Extension\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Extension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30495/JME.V15I0.1342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Extension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30495/JME.V15I0.1342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Attractivity and global attractivity for system of fractional functional and nonlinear fractional q-differential equations
In the current work, we present some innovative solutions for the attractivity of fractional functional q-differential equations involving Caputo fractional q-derivative in a $k$-dimensional system, by using some fixed point principle and the standard Schauder's fixed point theorem. Likewise, we look into the global attractivity of fractional q-differential equations involving classical Riemann-Liouville fractional q-derivative in a $k$-dimensional system, by employing the famous fixed point theorem of Krasnoselskii. Also, we must note that, this paper is mainly on the analysis of the model, with numerics used only to verify the analysis for checking the attractivity and global attractivity of solutions in the system. Lastly, we give two examples to illustrate our main results.