J. Delegido, Alejandro Pezzola, A. Casella, Cristina Winschel, Esther Patricia Urrego, J. C. Jimenez, J. A. Sobrino, Guillem Sòria, J. Moreno
{"title":"利用Sentinel-2估算阿根廷布宜诺斯艾利斯省南部的火灾严重程度,并与Landsat-8进行比较","authors":"J. Delegido, Alejandro Pezzola, A. Casella, Cristina Winschel, Esther Patricia Urrego, J. C. Jimenez, J. A. Sobrino, Guillem Sòria, J. Moreno","doi":"10.4995/RAET.2018.8934","DOIUrl":null,"url":null,"abstract":"Assessment of rural fire severity is fundamental to evaluate fire damages and to analyze recovery processes in a low-cost and efficient way. Burnt areas covering shrubs and grasslands were estimated in more than 30,000 km2 in Argentina from December 2016 to January 2017. The study area presented in this work is located in the South of the Buenos Aires province, and it covers a semiarid area with the presence of xerophilous shrubs and grasslands. This is one of the most abundant ecosystem in Central and Southern Argentina. Field campaigns were carried out over the area affected by the fire in order to georreference the burnt plots and characterized the fire severity in 5 levels. The objective of this work is to analyze the feasibility of new satellites Sentinel-2 for fire studies, as well as provide a comparison to Landsat-8 derived results, because this mission has been one of the most used in it. Pre-fire and postfire Sentinel-2 and Landsat-8 imagery were used to analyze different band combinations to compute a Normalized Difference Spectral Index (NDSI), as well as the difference of this index before and after the fire (dNDSI). Results show a significant correlation (R2 =0.72 and estimation error of 0.77) between dNDSI derived from Sentinel-2 and the severity levels obtained in the field campaign using bands 8a and 12 (NIR and SWIR), the same bands as used in the Normalized Burn Ratio (NBR). Moreover, results derived from Sentinel-2 are better than results derived from Landsat-8 (R2 =0.63 and estimation error of 0.92). Furthermore, it is observed that the correlation is improved when Sentinel-2 bands 6 and 5 (located in the Red-Edge region) are considered (R2 =0.74 and estimation error of 0.76). An inverse correlation has been observed between the recovery of vegetation four months after the fire and the fire severity level.","PeriodicalId":43626,"journal":{"name":"Revista de Teledeteccion","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Estimación del grado de severidad de incendios en el sur de la provincia de Buenos Aires, Argentina, usando Sentinel-2 y su comparación con Landsat-8\",\"authors\":\"J. Delegido, Alejandro Pezzola, A. Casella, Cristina Winschel, Esther Patricia Urrego, J. C. Jimenez, J. A. Sobrino, Guillem Sòria, J. Moreno\",\"doi\":\"10.4995/RAET.2018.8934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assessment of rural fire severity is fundamental to evaluate fire damages and to analyze recovery processes in a low-cost and efficient way. Burnt areas covering shrubs and grasslands were estimated in more than 30,000 km2 in Argentina from December 2016 to January 2017. The study area presented in this work is located in the South of the Buenos Aires province, and it covers a semiarid area with the presence of xerophilous shrubs and grasslands. This is one of the most abundant ecosystem in Central and Southern Argentina. Field campaigns were carried out over the area affected by the fire in order to georreference the burnt plots and characterized the fire severity in 5 levels. The objective of this work is to analyze the feasibility of new satellites Sentinel-2 for fire studies, as well as provide a comparison to Landsat-8 derived results, because this mission has been one of the most used in it. Pre-fire and postfire Sentinel-2 and Landsat-8 imagery were used to analyze different band combinations to compute a Normalized Difference Spectral Index (NDSI), as well as the difference of this index before and after the fire (dNDSI). Results show a significant correlation (R2 =0.72 and estimation error of 0.77) between dNDSI derived from Sentinel-2 and the severity levels obtained in the field campaign using bands 8a and 12 (NIR and SWIR), the same bands as used in the Normalized Burn Ratio (NBR). Moreover, results derived from Sentinel-2 are better than results derived from Landsat-8 (R2 =0.63 and estimation error of 0.92). Furthermore, it is observed that the correlation is improved when Sentinel-2 bands 6 and 5 (located in the Red-Edge region) are considered (R2 =0.74 and estimation error of 0.76). An inverse correlation has been observed between the recovery of vegetation four months after the fire and the fire severity level.\",\"PeriodicalId\":43626,\"journal\":{\"name\":\"Revista de Teledeteccion\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de Teledeteccion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/RAET.2018.8934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Teledeteccion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/RAET.2018.8934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Estimación del grado de severidad de incendios en el sur de la provincia de Buenos Aires, Argentina, usando Sentinel-2 y su comparación con Landsat-8
Assessment of rural fire severity is fundamental to evaluate fire damages and to analyze recovery processes in a low-cost and efficient way. Burnt areas covering shrubs and grasslands were estimated in more than 30,000 km2 in Argentina from December 2016 to January 2017. The study area presented in this work is located in the South of the Buenos Aires province, and it covers a semiarid area with the presence of xerophilous shrubs and grasslands. This is one of the most abundant ecosystem in Central and Southern Argentina. Field campaigns were carried out over the area affected by the fire in order to georreference the burnt plots and characterized the fire severity in 5 levels. The objective of this work is to analyze the feasibility of new satellites Sentinel-2 for fire studies, as well as provide a comparison to Landsat-8 derived results, because this mission has been one of the most used in it. Pre-fire and postfire Sentinel-2 and Landsat-8 imagery were used to analyze different band combinations to compute a Normalized Difference Spectral Index (NDSI), as well as the difference of this index before and after the fire (dNDSI). Results show a significant correlation (R2 =0.72 and estimation error of 0.77) between dNDSI derived from Sentinel-2 and the severity levels obtained in the field campaign using bands 8a and 12 (NIR and SWIR), the same bands as used in the Normalized Burn Ratio (NBR). Moreover, results derived from Sentinel-2 are better than results derived from Landsat-8 (R2 =0.63 and estimation error of 0.92). Furthermore, it is observed that the correlation is improved when Sentinel-2 bands 6 and 5 (located in the Red-Edge region) are considered (R2 =0.74 and estimation error of 0.76). An inverse correlation has been observed between the recovery of vegetation four months after the fire and the fire severity level.