{"title":"具有对偶幂律非线性的Camassa-Holm和Rosenau-RLW-Kawahara方程的孤立波解","authors":"N. Sukantamala, Supawan Nanta","doi":"10.1155/2021/6649285","DOIUrl":null,"url":null,"abstract":"The nonlinear wave equation is a significant concern to describe wave behavior and structures. Various mathematical models related to the wave phenomenon have been introduced and extensively being studied due to the complexity of wave behaviors. In the present work, a mathematical model to obtain the solution of the nonlinear wave by coupling the classical Camassa-Holm equation and the Rosenau-RLW-Kawahara equation with the dual term of nonlinearities is proposed. The solution properties are analytically derived. The new model still satisfies the fundamental energy conservative property as the original models. We then apply the energy method to prove the well-posedness of the model under the solitary wave hypothesis. Some categories of exact solitary wave solutions of the model are described by using the Ansatz method. In addition, we found that the dual term of nonlinearity is essential to obtain the class of analytic solution. Besides, we provide some graphical representations to illustrate the behavior of the traveling wave solutions.","PeriodicalId":7061,"journal":{"name":"Abstract and Applied Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Solitary Wave Solutions for the Camassa-Holm and the Rosenau-RLW-Kawahara Equations with the Dual-Power Law Nonlinearities\",\"authors\":\"N. Sukantamala, Supawan Nanta\",\"doi\":\"10.1155/2021/6649285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonlinear wave equation is a significant concern to describe wave behavior and structures. Various mathematical models related to the wave phenomenon have been introduced and extensively being studied due to the complexity of wave behaviors. In the present work, a mathematical model to obtain the solution of the nonlinear wave by coupling the classical Camassa-Holm equation and the Rosenau-RLW-Kawahara equation with the dual term of nonlinearities is proposed. The solution properties are analytically derived. The new model still satisfies the fundamental energy conservative property as the original models. We then apply the energy method to prove the well-posedness of the model under the solitary wave hypothesis. Some categories of exact solitary wave solutions of the model are described by using the Ansatz method. In addition, we found that the dual term of nonlinearity is essential to obtain the class of analytic solution. Besides, we provide some graphical representations to illustrate the behavior of the traveling wave solutions.\",\"PeriodicalId\":7061,\"journal\":{\"name\":\"Abstract and Applied Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstract and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/6649285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6649285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
On Solitary Wave Solutions for the Camassa-Holm and the Rosenau-RLW-Kawahara Equations with the Dual-Power Law Nonlinearities
The nonlinear wave equation is a significant concern to describe wave behavior and structures. Various mathematical models related to the wave phenomenon have been introduced and extensively being studied due to the complexity of wave behaviors. In the present work, a mathematical model to obtain the solution of the nonlinear wave by coupling the classical Camassa-Holm equation and the Rosenau-RLW-Kawahara equation with the dual term of nonlinearities is proposed. The solution properties are analytically derived. The new model still satisfies the fundamental energy conservative property as the original models. We then apply the energy method to prove the well-posedness of the model under the solitary wave hypothesis. Some categories of exact solitary wave solutions of the model are described by using the Ansatz method. In addition, we found that the dual term of nonlinearity is essential to obtain the class of analytic solution. Besides, we provide some graphical representations to illustrate the behavior of the traveling wave solutions.
期刊介绍:
Abstract and Applied Analysis is a mathematical journal devoted exclusively to the publication of high-quality research papers in the fields of abstract and applied analysis. Emphasis is placed on important developments in classical analysis, linear and nonlinear functional analysis, ordinary and partial differential equations, optimization theory, and control theory. Abstract and Applied Analysis supports the publication of original material involving the complete solution of significant problems in the above disciplines. Abstract and Applied Analysis also encourages the publication of timely and thorough survey articles on current trends in the theory and applications of analysis.