具有密度抑制运动的Keller-Segel模型中非恒定稳态的存在性和亚稳态

IF 0.4 Q4 MATHEMATICS, APPLIED
Manjun Ma, Peng Xia, Yazhou Han, Jicheng Tao
{"title":"具有密度抑制运动的Keller-Segel模型中非恒定稳态的存在性和亚稳态","authors":"Manjun Ma, Peng Xia, Yazhou Han, Jicheng Tao","doi":"10.5206/MASE/8120","DOIUrl":null,"url":null,"abstract":"We are concerned with stationary solutions of a Keller-SegelModel with density-suppressed motility and without cell proliferation. we establish the existence and the analytical approximation of non-constant stationary solutions by applying the phase plane analysis and bifurcation analysis. We show that the one-step solutions is stable and two or more-step solutions are always unstable. Then we further show that two or more-step solutions possess metastability. Our analytical results are corroborated by direct simulations of the underlying system.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Existence and metastability of non-constant steady states in a Keller-Segel model with density-suppressed motility\",\"authors\":\"Manjun Ma, Peng Xia, Yazhou Han, Jicheng Tao\",\"doi\":\"10.5206/MASE/8120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are concerned with stationary solutions of a Keller-SegelModel with density-suppressed motility and without cell proliferation. we establish the existence and the analytical approximation of non-constant stationary solutions by applying the phase plane analysis and bifurcation analysis. We show that the one-step solutions is stable and two or more-step solutions are always unstable. Then we further show that two or more-step solutions possess metastability. Our analytical results are corroborated by direct simulations of the underlying system.\",\"PeriodicalId\":93797,\"journal\":{\"name\":\"Mathematics in applied sciences and engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in applied sciences and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5206/MASE/8120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/MASE/8120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

我们关注的是Keller-Segel模型的固定解,该模型具有密度抑制的运动性且没有细胞增殖。利用相平面分析和分岔分析,建立了非常定常解的存在性和解析近似。我们证明了一步解是稳定的,两步或两步以上的解总是不稳定的。然后我们进一步证明了两个或两个以上的阶解具有亚稳性。我们的分析结果通过对底层系统的直接模拟得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and metastability of non-constant steady states in a Keller-Segel model with density-suppressed motility
We are concerned with stationary solutions of a Keller-SegelModel with density-suppressed motility and without cell proliferation. we establish the existence and the analytical approximation of non-constant stationary solutions by applying the phase plane analysis and bifurcation analysis. We show that the one-step solutions is stable and two or more-step solutions are always unstable. Then we further show that two or more-step solutions possess metastability. Our analytical results are corroborated by direct simulations of the underlying system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信