{"title":"内生真菌在大麦耐盐性中的作用","authors":"R. Kouadria, M. Bouzouina, B. Lotmani, S. Soualem","doi":"10.2478/hppj-2023-0002","DOIUrl":null,"url":null,"abstract":"Summary Salinity is an agricultural and eco-environmental problem worldwide that decreases crop production. Endophytic fungi have been shown to improve plant tolerance to stressful conditions. The purpose of the paper is to examine the efficiency of Embellisia phragmospora, Fusarium equiseti and Fusarium graminearum to improve tolerance of pot-grown barley in greenhouse under different levels of soil salinity (2.5, 8 and 14dS/m) by estimating growth, relative water content, mineral nutrition, photosynthetic pigments biosynthesis, proline and sugar levels. Results showed that E. phragmospora increased barley emergence rate to 66.7% compared to 60% recorded by non-colonized barley under 14dS/m soil salinity. The tested endophytes increased barley root length, shoot and root dry weights under salt stress. Endophytic fungi reduced Na+ accumulation and improved K+ uptake in barely under salinity. Fusarium equiseti and F. graminearum-inoculated barley increased proline content under salinity. Fusarium graminearum-colonized barley showed the highest sugar content under salt stress. Our findings demonstrate the feasibility of endophytic fungi bio-inoculation in improvement of barley tolerance to salt stress, which qualify them to be a potent tool to provide substantial benefits to crops for sustainable agriculture.","PeriodicalId":39459,"journal":{"name":"Hellenic Plant Protection Journal","volume":"16 1","pages":"12 - 22"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the role of endophytic fungi in barley salt-stress tolerance\",\"authors\":\"R. Kouadria, M. Bouzouina, B. Lotmani, S. Soualem\",\"doi\":\"10.2478/hppj-2023-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Salinity is an agricultural and eco-environmental problem worldwide that decreases crop production. Endophytic fungi have been shown to improve plant tolerance to stressful conditions. The purpose of the paper is to examine the efficiency of Embellisia phragmospora, Fusarium equiseti and Fusarium graminearum to improve tolerance of pot-grown barley in greenhouse under different levels of soil salinity (2.5, 8 and 14dS/m) by estimating growth, relative water content, mineral nutrition, photosynthetic pigments biosynthesis, proline and sugar levels. Results showed that E. phragmospora increased barley emergence rate to 66.7% compared to 60% recorded by non-colonized barley under 14dS/m soil salinity. The tested endophytes increased barley root length, shoot and root dry weights under salt stress. Endophytic fungi reduced Na+ accumulation and improved K+ uptake in barely under salinity. Fusarium equiseti and F. graminearum-inoculated barley increased proline content under salinity. Fusarium graminearum-colonized barley showed the highest sugar content under salt stress. Our findings demonstrate the feasibility of endophytic fungi bio-inoculation in improvement of barley tolerance to salt stress, which qualify them to be a potent tool to provide substantial benefits to crops for sustainable agriculture.\",\"PeriodicalId\":39459,\"journal\":{\"name\":\"Hellenic Plant Protection Journal\",\"volume\":\"16 1\",\"pages\":\"12 - 22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hellenic Plant Protection Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/hppj-2023-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hellenic Plant Protection Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/hppj-2023-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Unraveling the role of endophytic fungi in barley salt-stress tolerance
Summary Salinity is an agricultural and eco-environmental problem worldwide that decreases crop production. Endophytic fungi have been shown to improve plant tolerance to stressful conditions. The purpose of the paper is to examine the efficiency of Embellisia phragmospora, Fusarium equiseti and Fusarium graminearum to improve tolerance of pot-grown barley in greenhouse under different levels of soil salinity (2.5, 8 and 14dS/m) by estimating growth, relative water content, mineral nutrition, photosynthetic pigments biosynthesis, proline and sugar levels. Results showed that E. phragmospora increased barley emergence rate to 66.7% compared to 60% recorded by non-colonized barley under 14dS/m soil salinity. The tested endophytes increased barley root length, shoot and root dry weights under salt stress. Endophytic fungi reduced Na+ accumulation and improved K+ uptake in barely under salinity. Fusarium equiseti and F. graminearum-inoculated barley increased proline content under salinity. Fusarium graminearum-colonized barley showed the highest sugar content under salt stress. Our findings demonstrate the feasibility of endophytic fungi bio-inoculation in improvement of barley tolerance to salt stress, which qualify them to be a potent tool to provide substantial benefits to crops for sustainable agriculture.