具有稳定平衡点和菱形位的受限六体问题

IF 1.6 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Muhammad Abubakar Siddique, A. Kashif
{"title":"具有稳定平衡点和菱形位的受限六体问题","authors":"Muhammad Abubakar Siddique, A. Kashif","doi":"10.1155/2022/8100523","DOIUrl":null,"url":null,"abstract":"<jats:p>We explore the central configuration of the rhomboidal restricted six-body problem in Newtonian gravity, which has four primaries <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> (where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>i</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mo>…</mo>\n <mn>4</mn>\n </math>\n </jats:inline-formula>) at the vertices of the rhombus <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>a</mi>\n <mo>,</mo>\n <mn>0</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mo>−</mo>\n <mi>a</mi>\n <mo>,</mo>\n <mn>0</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>0</mn>\n <mo>,</mo>\n <mi>b</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>0</mn>\n <mo>,</mo>\n <mo>−</mo>\n <mi>b</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, respectively, and a fifth mass <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> is at the point of intersection of the diagonals of the rhombus, which is placed at the center of the coordinate system (i.e., at the origin <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>0,0</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>). The primaries at the rhombus’s opposite vertices are assumed to be equal, that is, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mi>m</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>4</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mover accent=\"true\">\n <mi>m</mi>\n <mo>˜</mo>\n </mover>\n </math>\n </jats:inline-formula>. After writing equations of motion, we express <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <mi>m</mi>\n </math>\n </jats:inline-formula>, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <mover accent=\"true\">\n <mi>m</mi>\n <mo>˜</mo>\n </mover>\n </math>\n </jats:inline-formula> in terms of mass parameters <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M13\">\n <mi>a</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M14\">\n <mi>b</mi>\n </math>\n </jats:inline-formula>. Finally, we find the bounds on <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M15\">\n <mi>a</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M16\">\n <mi>b</mi>\n </math>\n </jats:inline-formula> for positive masses. In the second part of this article, we investigate the motion and different features of a test particle (sixth body <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M17\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>5</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>) with infinitesimal mass that moves under the gravitational effect of the five primaries in the rhomboidal configuration. All four cases have 16, 12, 20, and 12 equilibrium points, with case-I, case-II, and case-III having stable equilibrium points. A significant shift in the position and the number of equilibrium points was found in four cases with the variations of mass parameters <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M18\">\n <mi>a</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M19\">\n <mi>b</mi>\n </math>\n </jats:inline-formula>. The regions for the possible motion of test particles have been discovered. It has also been observed that as the Jacobian constant <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M20\">\n <mi>C</mi>\n </math>\n </jats:inline-formula> increases, the permissible region of motion expands. We also have numerically verified the linear stability analysis for different cases, which shows the presence of stable equilibrium points.</jats:p>","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Restricted Six-Body Problem with Stable Equilibrium Points and a Rhomboidal Configuration\",\"authors\":\"Muhammad Abubakar Siddique, A. Kashif\",\"doi\":\"10.1155/2022/8100523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>We explore the central configuration of the rhomboidal restricted six-body problem in Newtonian gravity, which has four primaries <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula> (where <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>i</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mo>…</mo>\\n <mn>4</mn>\\n </math>\\n </jats:inline-formula>) at the vertices of the rhombus <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>a</mi>\\n <mo>,</mo>\\n <mn>0</mn>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mo>−</mo>\\n <mi>a</mi>\\n <mo>,</mo>\\n <mn>0</mn>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>b</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mo>−</mo>\\n <mi>b</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, respectively, and a fifth mass <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula> is at the point of intersection of the diagonals of the rhombus, which is placed at the center of the coordinate system (i.e., at the origin <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>0,0</mn>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>). The primaries at the rhombus’s opposite vertices are assumed to be equal, that is, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mi>m</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\">\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mn>4</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mover accent=\\\"true\\\">\\n <mi>m</mi>\\n <mo>˜</mo>\\n </mover>\\n </math>\\n </jats:inline-formula>. After writing equations of motion, we express <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M11\\\">\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <mi>m</mi>\\n </math>\\n </jats:inline-formula>, and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M12\\\">\\n <mover accent=\\\"true\\\">\\n <mi>m</mi>\\n <mo>˜</mo>\\n </mover>\\n </math>\\n </jats:inline-formula> in terms of mass parameters <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M13\\\">\\n <mi>a</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M14\\\">\\n <mi>b</mi>\\n </math>\\n </jats:inline-formula>. Finally, we find the bounds on <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M15\\\">\\n <mi>a</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M16\\\">\\n <mi>b</mi>\\n </math>\\n </jats:inline-formula> for positive masses. In the second part of this article, we investigate the motion and different features of a test particle (sixth body <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M17\\\">\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mn>5</mn>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula>) with infinitesimal mass that moves under the gravitational effect of the five primaries in the rhomboidal configuration. All four cases have 16, 12, 20, and 12 equilibrium points, with case-I, case-II, and case-III having stable equilibrium points. A significant shift in the position and the number of equilibrium points was found in four cases with the variations of mass parameters <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M18\\\">\\n <mi>a</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M19\\\">\\n <mi>b</mi>\\n </math>\\n </jats:inline-formula>. The regions for the possible motion of test particles have been discovered. It has also been observed that as the Jacobian constant <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M20\\\">\\n <mi>C</mi>\\n </math>\\n </jats:inline-formula> increases, the permissible region of motion expands. We also have numerically verified the linear stability analysis for different cases, which shows the presence of stable equilibrium points.</jats:p>\",\"PeriodicalId\":48962,\"journal\":{\"name\":\"Advances in Astronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/8100523\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/8100523","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了牛顿引力中菱形约束六体问题的中心构型,它有四个初选(其中i=1…4)在菱形a的顶点处,0,−a,0,0,b,和0,−b,并且第五质量m0在菱形的对角线的交点处,其被放置在坐标系的中心(即原点0,0)。假设菱形的相对顶点处的原色相等,m 1=m2=m和m 3=m 4=m ~。在写出运动方程后,以及根据质量参数a和b的m~。最后,我们找到了正质量在a和b上的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Restricted Six-Body Problem with Stable Equilibrium Points and a Rhomboidal Configuration
We explore the central configuration of the rhomboidal restricted six-body problem in Newtonian gravity, which has four primaries m i (where i = 1 , 4 ) at the vertices of the rhombus a , 0 , a , 0 , 0 , b , and 0 , b , respectively, and a fifth mass m 0 is at the point of intersection of the diagonals of the rhombus, which is placed at the center of the coordinate system (i.e., at the origin 0,0 ). The primaries at the rhombus’s opposite vertices are assumed to be equal, that is, m 1 = m 2 = m and m 3 = m 4 = m ˜ . After writing equations of motion, we express m 0 , m , and m ˜ in terms of mass parameters a and b . Finally, we find the bounds on a and b for positive masses. In the second part of this article, we investigate the motion and different features of a test particle (sixth body m 5 ) with infinitesimal mass that moves under the gravitational effect of the five primaries in the rhomboidal configuration. All four cases have 16, 12, 20, and 12 equilibrium points, with case-I, case-II, and case-III having stable equilibrium points. A significant shift in the position and the number of equilibrium points was found in four cases with the variations of mass parameters a and b . The regions for the possible motion of test particles have been discovered. It has also been observed that as the Jacobian constant C increases, the permissible region of motion expands. We also have numerically verified the linear stability analysis for different cases, which shows the presence of stable equilibrium points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Astronomy
Advances in Astronomy ASTRONOMY & ASTROPHYSICS-
CiteScore
2.70
自引率
7.10%
发文量
10
审稿时长
22 weeks
期刊介绍: Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信