{"title":"具有稳定平衡点和菱形位的受限六体问题","authors":"Muhammad Abubakar Siddique, A. Kashif","doi":"10.1155/2022/8100523","DOIUrl":null,"url":null,"abstract":"<jats:p>We explore the central configuration of the rhomboidal restricted six-body problem in Newtonian gravity, which has four primaries <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> (where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>i</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mo>…</mo>\n <mn>4</mn>\n </math>\n </jats:inline-formula>) at the vertices of the rhombus <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>a</mi>\n <mo>,</mo>\n <mn>0</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mo>−</mo>\n <mi>a</mi>\n <mo>,</mo>\n <mn>0</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>0</mn>\n <mo>,</mo>\n <mi>b</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>0</mn>\n <mo>,</mo>\n <mo>−</mo>\n <mi>b</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, respectively, and a fifth mass <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> is at the point of intersection of the diagonals of the rhombus, which is placed at the center of the coordinate system (i.e., at the origin <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>0,0</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>). The primaries at the rhombus’s opposite vertices are assumed to be equal, that is, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mi>m</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>4</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mover accent=\"true\">\n <mi>m</mi>\n <mo>˜</mo>\n </mover>\n </math>\n </jats:inline-formula>. After writing equations of motion, we express <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <mi>m</mi>\n </math>\n </jats:inline-formula>, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <mover accent=\"true\">\n <mi>m</mi>\n <mo>˜</mo>\n </mover>\n </math>\n </jats:inline-formula> in terms of mass parameters <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M13\">\n <mi>a</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M14\">\n <mi>b</mi>\n </math>\n </jats:inline-formula>. Finally, we find the bounds on <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M15\">\n <mi>a</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M16\">\n <mi>b</mi>\n </math>\n </jats:inline-formula> for positive masses. In the second part of this article, we investigate the motion and different features of a test particle (sixth body <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M17\">\n <msub>\n <mrow>\n <mi>m</mi>\n </mrow>\n <mrow>\n <mn>5</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>) with infinitesimal mass that moves under the gravitational effect of the five primaries in the rhomboidal configuration. All four cases have 16, 12, 20, and 12 equilibrium points, with case-I, case-II, and case-III having stable equilibrium points. A significant shift in the position and the number of equilibrium points was found in four cases with the variations of mass parameters <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M18\">\n <mi>a</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M19\">\n <mi>b</mi>\n </math>\n </jats:inline-formula>. The regions for the possible motion of test particles have been discovered. It has also been observed that as the Jacobian constant <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M20\">\n <mi>C</mi>\n </math>\n </jats:inline-formula> increases, the permissible region of motion expands. We also have numerically verified the linear stability analysis for different cases, which shows the presence of stable equilibrium points.</jats:p>","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Restricted Six-Body Problem with Stable Equilibrium Points and a Rhomboidal Configuration\",\"authors\":\"Muhammad Abubakar Siddique, A. Kashif\",\"doi\":\"10.1155/2022/8100523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>We explore the central configuration of the rhomboidal restricted six-body problem in Newtonian gravity, which has four primaries <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula> (where <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>i</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mo>…</mo>\\n <mn>4</mn>\\n </math>\\n </jats:inline-formula>) at the vertices of the rhombus <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>a</mi>\\n <mo>,</mo>\\n <mn>0</mn>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mo>−</mo>\\n <mi>a</mi>\\n <mo>,</mo>\\n <mn>0</mn>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>b</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mo>−</mo>\\n <mi>b</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, respectively, and a fifth mass <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula> is at the point of intersection of the diagonals of the rhombus, which is placed at the center of the coordinate system (i.e., at the origin <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>0,0</mn>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>). The primaries at the rhombus’s opposite vertices are assumed to be equal, that is, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mi>m</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\">\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mn>4</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mover accent=\\\"true\\\">\\n <mi>m</mi>\\n <mo>˜</mo>\\n </mover>\\n </math>\\n </jats:inline-formula>. After writing equations of motion, we express <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M11\\\">\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <mi>m</mi>\\n </math>\\n </jats:inline-formula>, and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M12\\\">\\n <mover accent=\\\"true\\\">\\n <mi>m</mi>\\n <mo>˜</mo>\\n </mover>\\n </math>\\n </jats:inline-formula> in terms of mass parameters <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M13\\\">\\n <mi>a</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M14\\\">\\n <mi>b</mi>\\n </math>\\n </jats:inline-formula>. Finally, we find the bounds on <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M15\\\">\\n <mi>a</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M16\\\">\\n <mi>b</mi>\\n </math>\\n </jats:inline-formula> for positive masses. In the second part of this article, we investigate the motion and different features of a test particle (sixth body <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M17\\\">\\n <msub>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <mrow>\\n <mn>5</mn>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula>) with infinitesimal mass that moves under the gravitational effect of the five primaries in the rhomboidal configuration. All four cases have 16, 12, 20, and 12 equilibrium points, with case-I, case-II, and case-III having stable equilibrium points. A significant shift in the position and the number of equilibrium points was found in four cases with the variations of mass parameters <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M18\\\">\\n <mi>a</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M19\\\">\\n <mi>b</mi>\\n </math>\\n </jats:inline-formula>. The regions for the possible motion of test particles have been discovered. It has also been observed that as the Jacobian constant <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M20\\\">\\n <mi>C</mi>\\n </math>\\n </jats:inline-formula> increases, the permissible region of motion expands. We also have numerically verified the linear stability analysis for different cases, which shows the presence of stable equilibrium points.</jats:p>\",\"PeriodicalId\":48962,\"journal\":{\"name\":\"Advances in Astronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/8100523\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/8100523","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The Restricted Six-Body Problem with Stable Equilibrium Points and a Rhomboidal Configuration
We explore the central configuration of the rhomboidal restricted six-body problem in Newtonian gravity, which has four primaries (where ) at the vertices of the rhombus , , , and , respectively, and a fifth mass is at the point of intersection of the diagonals of the rhombus, which is placed at the center of the coordinate system (i.e., at the origin ). The primaries at the rhombus’s opposite vertices are assumed to be equal, that is, and . After writing equations of motion, we express , and in terms of mass parameters and . Finally, we find the bounds on and for positive masses. In the second part of this article, we investigate the motion and different features of a test particle (sixth body ) with infinitesimal mass that moves under the gravitational effect of the five primaries in the rhomboidal configuration. All four cases have 16, 12, 20, and 12 equilibrium points, with case-I, case-II, and case-III having stable equilibrium points. A significant shift in the position and the number of equilibrium points was found in four cases with the variations of mass parameters and . The regions for the possible motion of test particles have been discovered. It has also been observed that as the Jacobian constant increases, the permissible region of motion expands. We also have numerically verified the linear stability analysis for different cases, which shows the presence of stable equilibrium points.
期刊介绍:
Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.