地质环境中氚迁移和滞留机制研究(以基辅放射性废物储存设施为例)

O. Pushkarov, I. Sevruk
{"title":"地质环境中氚迁移和滞留机制研究(以基辅放射性废物储存设施为例)","authors":"O. Pushkarov, I. Sevruk","doi":"10.15407/geotech2021.34.045","DOIUrl":null,"url":null,"abstract":"Radioactive waste storage facilities (RWSF) are a potential source of tritium in the biosphere. Engineered concrete constructions are not sufficiently reliable forasmuch as water leaks contaminated with tritium from the storage facilities into the geological environment has been detected. The barrier properties of the natural environment at the storage sites are determined by the ability to absorb and retain heavy isotopes of hydrogen during a considerable period of time and thus exclude its circulation in the biosphere. Various elements of the natural ecosystem take part in the absorption of tritium – the geological environment, soil organic matter, annual and perennial vegetation, micro- and macrobiota. A certain part of tritium in the gaseous and aerosol form is released into the air. The highest concentrations of tritium are recorded in the area close to the concrete radioactive waste (RW) storage facilities, where the vapor-gas emanation plume is least dispersed. With distance from the storage facilities, the tritium concentration in the soil humus layer significantly decreases due to the spatial dispersion of the tritium in the atmospheric plume. Tritium from the air enters the soil with the atmospheric precipitation and is partially retained in the humified layer of the soil. Most of the tritium from the atmospheric precipitation is transported by the vertical infiltration flow through the sedimentary layers represented by loess sandy loams and loams, where it is finally retained. In the area close to RWSFs, the concentration of heavy hydrogen isotope in pore, interstitial and film water (1 fraction) is up to 87 % of its total content in an elementary block. In the more tightly bound forms (2 and 3 fractions), it is 9 % and 4 %, respectively. Farther from the RW storage facilities in the predominant air flow direction, the tritium concentration in free water decreases to 75 %. In this area, more intensive redistribution of tritium between the structural sites is observed. At the more distant monitoring points (wells), from 25 % to 37 % of the total tritium amount in the soils is retained in more tightly bound forms in the structure of rock-forming, mainly clay minerals","PeriodicalId":52701,"journal":{"name":"Geokhimiia tekhnogenezu","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STUDY OF TRITIUM MIGRATION AND RETENTION MECHANISMS IN THE GEOLOGICAL ENVIRONMENT (BY THE EXAMPLE OF THE KYIV RADIOACTIVE WASTE STORAGE FACILITY)\",\"authors\":\"O. Pushkarov, I. Sevruk\",\"doi\":\"10.15407/geotech2021.34.045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radioactive waste storage facilities (RWSF) are a potential source of tritium in the biosphere. Engineered concrete constructions are not sufficiently reliable forasmuch as water leaks contaminated with tritium from the storage facilities into the geological environment has been detected. The barrier properties of the natural environment at the storage sites are determined by the ability to absorb and retain heavy isotopes of hydrogen during a considerable period of time and thus exclude its circulation in the biosphere. Various elements of the natural ecosystem take part in the absorption of tritium – the geological environment, soil organic matter, annual and perennial vegetation, micro- and macrobiota. A certain part of tritium in the gaseous and aerosol form is released into the air. The highest concentrations of tritium are recorded in the area close to the concrete radioactive waste (RW) storage facilities, where the vapor-gas emanation plume is least dispersed. With distance from the storage facilities, the tritium concentration in the soil humus layer significantly decreases due to the spatial dispersion of the tritium in the atmospheric plume. Tritium from the air enters the soil with the atmospheric precipitation and is partially retained in the humified layer of the soil. Most of the tritium from the atmospheric precipitation is transported by the vertical infiltration flow through the sedimentary layers represented by loess sandy loams and loams, where it is finally retained. In the area close to RWSFs, the concentration of heavy hydrogen isotope in pore, interstitial and film water (1 fraction) is up to 87 % of its total content in an elementary block. In the more tightly bound forms (2 and 3 fractions), it is 9 % and 4 %, respectively. Farther from the RW storage facilities in the predominant air flow direction, the tritium concentration in free water decreases to 75 %. In this area, more intensive redistribution of tritium between the structural sites is observed. At the more distant monitoring points (wells), from 25 % to 37 % of the total tritium amount in the soils is retained in more tightly bound forms in the structure of rock-forming, mainly clay minerals\",\"PeriodicalId\":52701,\"journal\":{\"name\":\"Geokhimiia tekhnogenezu\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geokhimiia tekhnogenezu\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/geotech2021.34.045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geokhimiia tekhnogenezu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/geotech2021.34.045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

放射性废物储存设施(RWSF)是生物圈中氚的潜在来源。工程混凝土结构不够可靠,因为已经检测到从储存设施中泄漏的受氚污染的水进入地质环境。储存地点的自然环境的屏障特性取决于在相当长的一段时间内吸收和保留氢的重同位素的能力,从而排除其在生物圈中的循环。自然生态系统的各种要素——地质环境、土壤有机质、一年生和多年生植被、微生物和微生物群——都参与了氚的吸收。一部分气态和气溶胶形式的氚被释放到空气中。氚的最高浓度记录在靠近混凝土放射性废物(RW)储存设施的区域,那里的蒸汽-气体排放羽流扩散最少。随着与储存设施的距离增加,土壤腐殖质层中的氚浓度显著降低,这是由于氚在大气羽流中的空间弥散。空气中的氚随大气降水进入土壤,部分留在土壤的腐殖层中。大气降水中的氚大部分由垂直入渗流通过以黄土砂壤土和壤土为代表的沉积层输送,并最终滞留。在接近可再生水场的区域,孔隙水、间隙水和膜水(1分)中重氢同位素的含量高达基本块体总含量的87%。在更紧密结合的形式(二分数和三分数)中,它分别是9%和4%。在远离主要气流方向的RW储存设施的地方,自由水中的氚浓度降至75%。在这一区域,观察到氚在结构位点之间更密集的再分配。在较远的监测点(井),土壤中总氚量的25%至37%以更紧密的形式保留在岩石形成的结构中,主要是粘土矿物
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STUDY OF TRITIUM MIGRATION AND RETENTION MECHANISMS IN THE GEOLOGICAL ENVIRONMENT (BY THE EXAMPLE OF THE KYIV RADIOACTIVE WASTE STORAGE FACILITY)
Radioactive waste storage facilities (RWSF) are a potential source of tritium in the biosphere. Engineered concrete constructions are not sufficiently reliable forasmuch as water leaks contaminated with tritium from the storage facilities into the geological environment has been detected. The barrier properties of the natural environment at the storage sites are determined by the ability to absorb and retain heavy isotopes of hydrogen during a considerable period of time and thus exclude its circulation in the biosphere. Various elements of the natural ecosystem take part in the absorption of tritium – the geological environment, soil organic matter, annual and perennial vegetation, micro- and macrobiota. A certain part of tritium in the gaseous and aerosol form is released into the air. The highest concentrations of tritium are recorded in the area close to the concrete radioactive waste (RW) storage facilities, where the vapor-gas emanation plume is least dispersed. With distance from the storage facilities, the tritium concentration in the soil humus layer significantly decreases due to the spatial dispersion of the tritium in the atmospheric plume. Tritium from the air enters the soil with the atmospheric precipitation and is partially retained in the humified layer of the soil. Most of the tritium from the atmospheric precipitation is transported by the vertical infiltration flow through the sedimentary layers represented by loess sandy loams and loams, where it is finally retained. In the area close to RWSFs, the concentration of heavy hydrogen isotope in pore, interstitial and film water (1 fraction) is up to 87 % of its total content in an elementary block. In the more tightly bound forms (2 and 3 fractions), it is 9 % and 4 %, respectively. Farther from the RW storage facilities in the predominant air flow direction, the tritium concentration in free water decreases to 75 %. In this area, more intensive redistribution of tritium between the structural sites is observed. At the more distant monitoring points (wells), from 25 % to 37 % of the total tritium amount in the soils is retained in more tightly bound forms in the structure of rock-forming, mainly clay minerals
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信