基于最小模型选择准则的多元广义岭回归岭参数优化

Pub Date : 2021-07-01 DOI:10.32917/H2020104
M. Ohishi
{"title":"基于最小模型选择准则的多元广义岭回归岭参数优化","authors":"M. Ohishi","doi":"10.32917/H2020104","DOIUrl":null,"url":null,"abstract":"A multivariate generalized ridge (MGR) regression provides a shrinkage estimator of the multivariate linear regression by multiple ridge parameters. Since the ridge parameters which adjust the amount of shrinkage of the estimator are unknown, their optimization is an important task to obtain a better estimator. For the univariate case, a fast algorithm has been proposed for optimizing ridge parameters based on minimizing a model selection criterion (MSC) and the algorithm can be applied to various MSCs. In this paper, we extend this algorithm to MGR regression. We also describe the relationship between the MGR estimator which is not sparse and a multivariate adaptive group Lasso estimator which is sparse, under orthogonal explanatory variables.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ridge parameters optimization based on minimizing model selection criterion in multivariate generalized ridge regression\",\"authors\":\"M. Ohishi\",\"doi\":\"10.32917/H2020104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multivariate generalized ridge (MGR) regression provides a shrinkage estimator of the multivariate linear regression by multiple ridge parameters. Since the ridge parameters which adjust the amount of shrinkage of the estimator are unknown, their optimization is an important task to obtain a better estimator. For the univariate case, a fast algorithm has been proposed for optimizing ridge parameters based on minimizing a model selection criterion (MSC) and the algorithm can be applied to various MSCs. In this paper, we extend this algorithm to MGR regression. We also describe the relationship between the MGR estimator which is not sparse and a multivariate adaptive group Lasso estimator which is sparse, under orthogonal explanatory variables.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/H2020104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/H2020104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多元广义岭回归(MGR)提供了多元线性回归的缩差估计。由于调节估计器收缩量的脊参数是未知的,因此对脊参数的优化是获得更好估计器的重要任务。针对单变量情况,提出了一种基于最小化模型选择准则(MSC)的山脊参数快速优化算法,该算法可适用于各种模型选择准则。本文将该算法推广到MGR回归中。在正交解释变量下,我们还描述了非稀疏的MGR估计量与稀疏的多元自适应群Lasso估计量之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Ridge parameters optimization based on minimizing model selection criterion in multivariate generalized ridge regression
A multivariate generalized ridge (MGR) regression provides a shrinkage estimator of the multivariate linear regression by multiple ridge parameters. Since the ridge parameters which adjust the amount of shrinkage of the estimator are unknown, their optimization is an important task to obtain a better estimator. For the univariate case, a fast algorithm has been proposed for optimizing ridge parameters based on minimizing a model selection criterion (MSC) and the algorithm can be applied to various MSCs. In this paper, we extend this algorithm to MGR regression. We also describe the relationship between the MGR estimator which is not sparse and a multivariate adaptive group Lasso estimator which is sparse, under orthogonal explanatory variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信