可积系统和特殊Kähler度量

IF 1.3 Q1 MATHEMATICS
N. Hitchin
{"title":"可积系统和特殊Kähler度量","authors":"N. Hitchin","doi":"10.4171/emss/46","DOIUrl":null,"url":null,"abstract":"We describe the Special Kahler structure on the base of the so-called Hitchin system in terms of the geometry of the space of spectral curves. It yields a simple formula for the Kahler potential. This extends to the case of a singular spectral curve and we show that this defines the Special Kahler structure on certain natural integrable subsystems. Examples include the extreme case where the metric is flat.","PeriodicalId":43833,"journal":{"name":"EMS Surveys in Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integrable systems and Special Kähler metrics\",\"authors\":\"N. Hitchin\",\"doi\":\"10.4171/emss/46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the Special Kahler structure on the base of the so-called Hitchin system in terms of the geometry of the space of spectral curves. It yields a simple formula for the Kahler potential. This extends to the case of a singular spectral curve and we show that this defines the Special Kahler structure on certain natural integrable subsystems. Examples include the extreme case where the metric is flat.\",\"PeriodicalId\":43833,\"journal\":{\"name\":\"EMS Surveys in Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMS Surveys in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/emss/46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMS Surveys in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/emss/46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们在所谓的希钦系统的基础上,从光谱曲线空间的几何角度描述了特殊的Kahler结构。它给出了一个简单的卡勒势公式。将此推广到奇异谱曲线的情况,并证明了这定义了某些自然可积子系统上的特殊Kahler结构。例子包括度量是平的极端情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrable systems and Special Kähler metrics
We describe the Special Kahler structure on the base of the so-called Hitchin system in terms of the geometry of the space of spectral curves. It yields a simple formula for the Kahler potential. This extends to the case of a singular spectral curve and we show that this defines the Special Kahler structure on certain natural integrable subsystems. Examples include the extreme case where the metric is flat.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信