Mustapha Omenesa Idris, Nabil Al‐Zaqri, I. Warad, A. Hossain, Nahian Masud, Mohammed Ali
{"title":"商业糖作为单室微生物燃料电池中的底物对金属生物修复提高能量生产的影响","authors":"Mustapha Omenesa Idris, Nabil Al‐Zaqri, I. Warad, A. Hossain, Nahian Masud, Mohammed Ali","doi":"10.1155/2023/9741246","DOIUrl":null,"url":null,"abstract":"Microbial fuel cells (MFCs) have emerged as a viable method for bioremediation of toxic metals while also producing energy. In this paper, we examine the issue of organic substrate as a source of metabolism for microbe growth in MFC, as well as its significance for metal ion degradation in tandem with energy production. This study focused on the use of commercial sugar as an organic substrate in a single-chamber MFC. The MFC was operated for 27 days, with the highest voltage of 150 mV achieved on day 12, and toxic metal bioremediation efficiencies of 89%, 76.45%, and 89.45% for Pb2+, Cd2+, and Hg2+, respectively. Every 24 hours, the organic substrate (sugar solution) was fed into the cell. This study’s mechanism of metal ion degradation and electron transport is also thoroughly described. In addition, some future views have been highlighted.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Impact of Commercial Sugar as a Substrate in Single-Chamber Microbial Fuel Cells to Improve the Energy Production with Bioremediation of Metals\",\"authors\":\"Mustapha Omenesa Idris, Nabil Al‐Zaqri, I. Warad, A. Hossain, Nahian Masud, Mohammed Ali\",\"doi\":\"10.1155/2023/9741246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microbial fuel cells (MFCs) have emerged as a viable method for bioremediation of toxic metals while also producing energy. In this paper, we examine the issue of organic substrate as a source of metabolism for microbe growth in MFC, as well as its significance for metal ion degradation in tandem with energy production. This study focused on the use of commercial sugar as an organic substrate in a single-chamber MFC. The MFC was operated for 27 days, with the highest voltage of 150 mV achieved on day 12, and toxic metal bioremediation efficiencies of 89%, 76.45%, and 89.45% for Pb2+, Cd2+, and Hg2+, respectively. Every 24 hours, the organic substrate (sugar solution) was fed into the cell. This study’s mechanism of metal ion degradation and electron transport is also thoroughly described. In addition, some future views have been highlighted.\",\"PeriodicalId\":13921,\"journal\":{\"name\":\"International Journal of Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/9741246\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/9741246","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Impact of Commercial Sugar as a Substrate in Single-Chamber Microbial Fuel Cells to Improve the Energy Production with Bioremediation of Metals
Microbial fuel cells (MFCs) have emerged as a viable method for bioremediation of toxic metals while also producing energy. In this paper, we examine the issue of organic substrate as a source of metabolism for microbe growth in MFC, as well as its significance for metal ion degradation in tandem with energy production. This study focused on the use of commercial sugar as an organic substrate in a single-chamber MFC. The MFC was operated for 27 days, with the highest voltage of 150 mV achieved on day 12, and toxic metal bioremediation efficiencies of 89%, 76.45%, and 89.45% for Pb2+, Cd2+, and Hg2+, respectively. Every 24 hours, the organic substrate (sugar solution) was fed into the cell. This study’s mechanism of metal ion degradation and electron transport is also thoroughly described. In addition, some future views have been highlighted.
期刊介绍:
International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures.
As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.