{"title":"在kaneko和koike之后的极值拟模形式","authors":"F. Pellarin, G. Nebe","doi":"10.2206/kyushujm.74.401","DOIUrl":null,"url":null,"abstract":"Kaneko and Koike introduced the notion of extremal quasi-modular form and proposed conjectures on their arithmetic properties. The aim of this note is to prove a rather sharp multiplicity estimate for these quasi-modular forms. The note ends with discussions and partial answers around these conjectures and an appendix by G. Nebe containing the proof of the integrality of the Fourier coefficients of the normalised extremal quasimodular form of weight 14 and depth 1.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"ON EXTREMAL QUASI-MODULAR FORMS AFTER KANEKO AND KOIKE\",\"authors\":\"F. Pellarin, G. Nebe\",\"doi\":\"10.2206/kyushujm.74.401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kaneko and Koike introduced the notion of extremal quasi-modular form and proposed conjectures on their arithmetic properties. The aim of this note is to prove a rather sharp multiplicity estimate for these quasi-modular forms. The note ends with discussions and partial answers around these conjectures and an appendix by G. Nebe containing the proof of the integrality of the Fourier coefficients of the normalised extremal quasimodular form of weight 14 and depth 1.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.74.401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.74.401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ON EXTREMAL QUASI-MODULAR FORMS AFTER KANEKO AND KOIKE
Kaneko and Koike introduced the notion of extremal quasi-modular form and proposed conjectures on their arithmetic properties. The aim of this note is to prove a rather sharp multiplicity estimate for these quasi-modular forms. The note ends with discussions and partial answers around these conjectures and an appendix by G. Nebe containing the proof of the integrality of the Fourier coefficients of the normalised extremal quasimodular form of weight 14 and depth 1.