在kaneko和koike之后的极值拟模形式

Pub Date : 2019-10-25 DOI:10.2206/kyushujm.74.401
F. Pellarin, G. Nebe
{"title":"在kaneko和koike之后的极值拟模形式","authors":"F. Pellarin, G. Nebe","doi":"10.2206/kyushujm.74.401","DOIUrl":null,"url":null,"abstract":"Kaneko and Koike introduced the notion of extremal quasi-modular form and proposed conjectures on their arithmetic properties. The aim of this note is to prove a rather sharp multiplicity estimate for these quasi-modular forms. The note ends with discussions and partial answers around these conjectures and an appendix by G. Nebe containing the proof of the integrality of the Fourier coefficients of the normalised extremal quasimodular form of weight 14 and depth 1.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"ON EXTREMAL QUASI-MODULAR FORMS AFTER KANEKO AND KOIKE\",\"authors\":\"F. Pellarin, G. Nebe\",\"doi\":\"10.2206/kyushujm.74.401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kaneko and Koike introduced the notion of extremal quasi-modular form and proposed conjectures on their arithmetic properties. The aim of this note is to prove a rather sharp multiplicity estimate for these quasi-modular forms. The note ends with discussions and partial answers around these conjectures and an appendix by G. Nebe containing the proof of the integrality of the Fourier coefficients of the normalised extremal quasimodular form of weight 14 and depth 1.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.74.401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.74.401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

Kaneko和Koike引入了极值拟模形式的概念,并对其算术性质提出了猜想。本文的目的是证明这些准模形式的一个相当尖锐的重性估计。笔记以围绕这些猜想的讨论和部分答案结束,G. Nebe的附录包含了权值14和深度1的归一化极值拟模形式的傅里叶系数的完整性证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
ON EXTREMAL QUASI-MODULAR FORMS AFTER KANEKO AND KOIKE
Kaneko and Koike introduced the notion of extremal quasi-modular form and proposed conjectures on their arithmetic properties. The aim of this note is to prove a rather sharp multiplicity estimate for these quasi-modular forms. The note ends with discussions and partial answers around these conjectures and an appendix by G. Nebe containing the proof of the integrality of the Fourier coefficients of the normalised extremal quasimodular form of weight 14 and depth 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信