考虑流变特性的粘土一维固结研究

Chen Zhuo, D. Jingen, Y. Baohua, Weng Haoyang, Wang Jie, Yan Xinjiang
{"title":"考虑流变特性的粘土一维固结研究","authors":"Chen Zhuo, D. Jingen, Y. Baohua, Weng Haoyang, Wang Jie, Yan Xinjiang","doi":"10.21625/ARCHIVE.V2I4.383","DOIUrl":null,"url":null,"abstract":"The paper concerns the influence of time and strain-rate effects on the clays in one-dimensional consolidation under constant effective stress. An improved creep constitutive model is deduced, by analyzing the stress-strain theory developed by yin and sekiguchi. Treating the sample as a single system and applying the boundary conditions at the system level, differential mathematical equations to the consolidation problem of clays are obtained. The proposed differential mathematical equations have advantages in their ability to (i) not clarify the primary consolidation and secondary consolidation deformation. The error in calculating consolidation deformation which is caused by the argument about end of primary consolidation can be avoided. (ii) obtain the model parameters easily. How to achieve parameters by experiment is described in detail in the paper. (iii) be programmed and solved readily for the finite difference description of the problem. Results from clays have been used to examine the validity of the model. It is shown that the proposed model can describe the consolidation of clays well.","PeriodicalId":33666,"journal":{"name":"ARCHiveSR","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research of One-Dimensional Consolidation of Clays Considering Their Rehological Properties\",\"authors\":\"Chen Zhuo, D. Jingen, Y. Baohua, Weng Haoyang, Wang Jie, Yan Xinjiang\",\"doi\":\"10.21625/ARCHIVE.V2I4.383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper concerns the influence of time and strain-rate effects on the clays in one-dimensional consolidation under constant effective stress. An improved creep constitutive model is deduced, by analyzing the stress-strain theory developed by yin and sekiguchi. Treating the sample as a single system and applying the boundary conditions at the system level, differential mathematical equations to the consolidation problem of clays are obtained. The proposed differential mathematical equations have advantages in their ability to (i) not clarify the primary consolidation and secondary consolidation deformation. The error in calculating consolidation deformation which is caused by the argument about end of primary consolidation can be avoided. (ii) obtain the model parameters easily. How to achieve parameters by experiment is described in detail in the paper. (iii) be programmed and solved readily for the finite difference description of the problem. Results from clays have been used to examine the validity of the model. It is shown that the proposed model can describe the consolidation of clays well.\",\"PeriodicalId\":33666,\"journal\":{\"name\":\"ARCHiveSR\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ARCHiveSR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21625/ARCHIVE.V2I4.383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARCHiveSR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21625/ARCHIVE.V2I4.383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在恒定有效应力作用下,时间和应变率效应对土体一维固结的影响。通过对yin和sekiguchi的应力-应变理论的分析,推导出一种改进的蠕变本构模型。将试样视为单一系统,应用系统级边界条件,得到了土体固结问题的微分数学方程。所提出的微分数学方程具有以下优点:(1)不明确初级固结变形和次级固结变形。可以避免因初次固结结束的争论而引起的固结变形计算误差。(ii)容易获得模型参数。文中详细介绍了如何通过实验实现参数。(iii)对问题的有限差分描述进行编程并易于求解。粘土的结果已被用来检验模型的有效性。结果表明,该模型能较好地描述粘土的固结过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research of One-Dimensional Consolidation of Clays Considering Their Rehological Properties
The paper concerns the influence of time and strain-rate effects on the clays in one-dimensional consolidation under constant effective stress. An improved creep constitutive model is deduced, by analyzing the stress-strain theory developed by yin and sekiguchi. Treating the sample as a single system and applying the boundary conditions at the system level, differential mathematical equations to the consolidation problem of clays are obtained. The proposed differential mathematical equations have advantages in their ability to (i) not clarify the primary consolidation and secondary consolidation deformation. The error in calculating consolidation deformation which is caused by the argument about end of primary consolidation can be avoided. (ii) obtain the model parameters easily. How to achieve parameters by experiment is described in detail in the paper. (iii) be programmed and solved readily for the finite difference description of the problem. Results from clays have been used to examine the validity of the model. It is shown that the proposed model can describe the consolidation of clays well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
8
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信