基于人工神经网络的上流式厌氧固定床生物反应器工业污水处理厂模拟

Q4 Environmental Science
Kobra Verijkazemi, R. Jalilzadeh Yengejeh
{"title":"基于人工神经网络的上流式厌氧固定床生物反应器工业污水处理厂模拟","authors":"Kobra Verijkazemi, R. Jalilzadeh Yengejeh","doi":"10.34172/ajehe.2022.01","DOIUrl":null,"url":null,"abstract":"Given the variable nature of industrial wastewaters, the appropriate operation of an industrial wastewater treatment plant (WWTP) is a prerequisite for keeping process stability at ideal conditions. In this respect, an artificial neural network (ANN) can be a powerful device for the prediction of treatment performance. This study assessed some qualitative parameters of industrial wastewater (Amol Industrial Estate) during a one-year operating period. The wastewater treatment process consisted of an equalization tank, up-flow anaerobic fixed bed (UAFB) bioreactor, activated sludge tank, sedimentation tank, and chlorination basin. The ANN was utilized to estimate the system efficiency of the UAFB process. The outcomes demonstrated an extraordinary arrangement between the real and simulated data (R2>0.8). This model supplied a proper device for forecasting the implementation of WWTPs. Continuous checking elements could be used for the simulation of wastewater specifications.","PeriodicalId":8672,"journal":{"name":"Avicenna Journal of Environmental Health Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulation of an Industrial Wastewater Treatment Plant by Up-flow Anaerobic Fixed Bed Bioreactor Based on an Artificial Neural Network\",\"authors\":\"Kobra Verijkazemi, R. Jalilzadeh Yengejeh\",\"doi\":\"10.34172/ajehe.2022.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the variable nature of industrial wastewaters, the appropriate operation of an industrial wastewater treatment plant (WWTP) is a prerequisite for keeping process stability at ideal conditions. In this respect, an artificial neural network (ANN) can be a powerful device for the prediction of treatment performance. This study assessed some qualitative parameters of industrial wastewater (Amol Industrial Estate) during a one-year operating period. The wastewater treatment process consisted of an equalization tank, up-flow anaerobic fixed bed (UAFB) bioreactor, activated sludge tank, sedimentation tank, and chlorination basin. The ANN was utilized to estimate the system efficiency of the UAFB process. The outcomes demonstrated an extraordinary arrangement between the real and simulated data (R2>0.8). This model supplied a proper device for forecasting the implementation of WWTPs. Continuous checking elements could be used for the simulation of wastewater specifications.\",\"PeriodicalId\":8672,\"journal\":{\"name\":\"Avicenna Journal of Environmental Health Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Avicenna Journal of Environmental Health Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/ajehe.2022.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avicenna Journal of Environmental Health Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/ajehe.2022.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

摘要

鉴于工业废水的多变性质,工业废水处理厂(WWTP)的适当运行是在理想条件下保持工艺稳定性的先决条件。在这方面,人工神经网络(ANN)可以是预测治疗性能的强大设备。本研究评估了一年运营期内工业废水(阿莫尔工业区)的一些定性参数。废水处理工艺由均衡池、上流式厌氧固定床(UAFB)生物反应器、活性污泥池、沉淀池和氯化池组成。利用人工神经网络来估计UAFB过程的系统效率。结果表明,真实数据和模拟数据之间存在异常排列(R2>0.8)。该模型为预测WWTP的实施提供了合适的设备。连续检查元件可用于模拟废水规格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of an Industrial Wastewater Treatment Plant by Up-flow Anaerobic Fixed Bed Bioreactor Based on an Artificial Neural Network
Given the variable nature of industrial wastewaters, the appropriate operation of an industrial wastewater treatment plant (WWTP) is a prerequisite for keeping process stability at ideal conditions. In this respect, an artificial neural network (ANN) can be a powerful device for the prediction of treatment performance. This study assessed some qualitative parameters of industrial wastewater (Amol Industrial Estate) during a one-year operating period. The wastewater treatment process consisted of an equalization tank, up-flow anaerobic fixed bed (UAFB) bioreactor, activated sludge tank, sedimentation tank, and chlorination basin. The ANN was utilized to estimate the system efficiency of the UAFB process. The outcomes demonstrated an extraordinary arrangement between the real and simulated data (R2>0.8). This model supplied a proper device for forecasting the implementation of WWTPs. Continuous checking elements could be used for the simulation of wastewater specifications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Avicenna Journal of Environmental Health Engineering
Avicenna Journal of Environmental Health Engineering Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
1.00
自引率
0.00%
发文量
8
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信