Kazhdan常数,具有大傅立叶系数和刚性序列的连续概率测度

IF 1.1 3区 数学 Q1 MATHEMATICS
C. Badea, S. Grivaux
{"title":"Kazhdan常数,具有大傅立叶系数和刚性序列的连续概率测度","authors":"C. Badea, S. Grivaux","doi":"10.4171/cmh/482","DOIUrl":null,"url":null,"abstract":"Exploiting a construction of rigidity sequences for weakly mixing dynamical systems by Fayad and Thouvenot, we show that for every integers $p_{1},\\dots,p_{r}$ there exists a continuous probability measure $\\mu $ on the unit circle $\\mathbb{T}$ such that \\[ \\inf_{k_{1}\\ge 0,\\dots,k_{r}\\ge 0}|\\widehat{\\mu }(p_{1}^{k_{1}}\\dots p_{r}^{k_{r}})|>0. \\] This results applies in particular to the Furstenberg set $F=\\{2^{k}3^{k'}\\,;\\,k\\ge 0,\\ k'\\ge 0\\}$, and disproves a 1988 conjecture of Lyons inspired by Furstenberg's famous $\\times 2$-$\\times 3$ conjecture. We also estimate the modified Kazhdan constant of $F$ and obtain general results on rigidity sequences which allow us to retrieve essentially all known examples of such sequences.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/cmh/482","citationCount":"8","resultStr":"{\"title\":\"Kazhdan constants, continuous probability measures with large Fourier coefficients and rigidity sequences\",\"authors\":\"C. Badea, S. Grivaux\",\"doi\":\"10.4171/cmh/482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploiting a construction of rigidity sequences for weakly mixing dynamical systems by Fayad and Thouvenot, we show that for every integers $p_{1},\\\\dots,p_{r}$ there exists a continuous probability measure $\\\\mu $ on the unit circle $\\\\mathbb{T}$ such that \\\\[ \\\\inf_{k_{1}\\\\ge 0,\\\\dots,k_{r}\\\\ge 0}|\\\\widehat{\\\\mu }(p_{1}^{k_{1}}\\\\dots p_{r}^{k_{r}})|>0. \\\\] This results applies in particular to the Furstenberg set $F=\\\\{2^{k}3^{k'}\\\\,;\\\\,k\\\\ge 0,\\\\ k'\\\\ge 0\\\\}$, and disproves a 1988 conjecture of Lyons inspired by Furstenberg's famous $\\\\times 2$-$\\\\times 3$ conjecture. We also estimate the modified Kazhdan constant of $F$ and obtain general results on rigidity sequences which allow us to retrieve essentially all known examples of such sequences.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/cmh/482\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/cmh/482\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/482","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

利用Fayad和Thouvenot构造的弱混合动力系统的刚度序列,我们证明了对于每一个整数$p_{1},\dots,p_{r}$,在单位圆$\mathbb{T}$上存在一个连续的概率测度$\mu$,使得\[\inf_{k_{1}\ge 0,\dots这个结果特别适用于Furstenberg集合$F=\{2^{k}3^{k'}\,;\,k\ge0,\k'\ge0\}$,并推翻了受Furstenberg著名的$\times2$-$\times3$猜想启发的Lyons 1988年的一个猜想。我们还估计了$F$的修正Kazhdan常数,并获得了刚性序列的一般结果,这使我们能够检索到基本上所有已知的此类序列的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kazhdan constants, continuous probability measures with large Fourier coefficients and rigidity sequences
Exploiting a construction of rigidity sequences for weakly mixing dynamical systems by Fayad and Thouvenot, we show that for every integers $p_{1},\dots,p_{r}$ there exists a continuous probability measure $\mu $ on the unit circle $\mathbb{T}$ such that \[ \inf_{k_{1}\ge 0,\dots,k_{r}\ge 0}|\widehat{\mu }(p_{1}^{k_{1}}\dots p_{r}^{k_{r}})|>0. \] This results applies in particular to the Furstenberg set $F=\{2^{k}3^{k'}\,;\,k\ge 0,\ k'\ge 0\}$, and disproves a 1988 conjecture of Lyons inspired by Furstenberg's famous $\times 2$-$\times 3$ conjecture. We also estimate the modified Kazhdan constant of $F$ and obtain general results on rigidity sequences which allow us to retrieve essentially all known examples of such sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信