{"title":"在最简单类型的x2 = 0上,施普林格纤维的单一组分的分层","authors":"Ronit Mansour, A. Melnikov","doi":"10.1007/s00031-022-09738-4","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":49423,"journal":{"name":"Transformation Groups","volume":"28 1","pages":"867 - 910"},"PeriodicalIF":0.4000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STRATIFICATION OF A SINGULAR COMPONENT OF A SPRINGER FIBER OVER x2 = 0 OF THE SIMPLEST TYPE\",\"authors\":\"Ronit Mansour, A. Melnikov\",\"doi\":\"10.1007/s00031-022-09738-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":49423,\"journal\":{\"name\":\"Transformation Groups\",\"volume\":\"28 1\",\"pages\":\"867 - 910\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transformation Groups\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-022-09738-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transformation Groups","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-022-09738-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
Transformation Groups will only accept research articles containing new results, complete Proofs, and an abstract. Topics include: Lie groups and Lie algebras; Lie transformation groups and holomorphic transformation groups; Algebraic groups; Invariant theory; Geometry and topology of homogeneous spaces; Discrete subgroups of Lie groups; Quantum groups and enveloping algebras; Group aspects of conformal field theory; Kac-Moody groups and algebras; Lie supergroups and superalgebras.