M. Akman, Jasun Gong, Jay Hineman, Johnny M. Lewis, A. Vogel
求助PDF
{"title":"Brunn—Minkowski不等式与非线性容量的一个Minkowsky问题","authors":"M. Akman, Jasun Gong, Jay Hineman, Johnny M. Lewis, A. Vogel","doi":"10.1090/memo/1348","DOIUrl":null,"url":null,"abstract":"<p>In this article we study two classical potential-theoretic problems in convex geometry. The first problem is an inequality of Brunn-Minkowski type for a nonlinear capacity, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C a p Subscript script upper A Baseline comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>Cap</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\operatorname {Cap}_{\\mathcal {A}},</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-capacity is associated with a nonlinear elliptic PDE whose structure is modeled on the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-Laplace equation and whose solutions in an open set are called <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-harmonic.</p>\n\n<p>In the first part of this article, we prove the Brunn-Minkowski inequality for this capacity: <disp-formula content-type=\"math/mathml\">\n\\[\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket upper C a p Subscript script upper A Baseline left-parenthesis lamda upper E 1 plus left-parenthesis 1 minus lamda right-parenthesis upper E 2 right-parenthesis right-bracket Superscript StartFraction 1 Over left-parenthesis n minus p right-parenthesis EndFraction Baseline greater-than-or-equal-to lamda left-bracket upper C a p Subscript script upper A Baseline left-parenthesis upper E 1 right-parenthesis right-bracket Superscript StartFraction 1 Over left-parenthesis n minus p right-parenthesis EndFraction Baseline plus left-parenthesis 1 minus lamda right-parenthesis left-bracket upper C a p Subscript script upper A Baseline left-parenthesis upper E 2 right-parenthesis right-bracket Superscript StartFraction 1 Over left-parenthesis n minus p right-parenthesis EndFraction\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow>\n <mml:mo>[</mml:mo>\n <mml:msub>\n <mml:mi>Cap</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>+</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>]</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:mfrac>\n </mml:mrow>\n </mml:msup>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mspace width=\"thinmathspace\" />\n <mml:msup>\n <mml:mrow>\n <mml:mo>[</mml:mo>\n <mml:msub>\n <mml:mi>Cap</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>]</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:mfrac>\n </mml:mrow>\n </mml:msup>\n <mml:mo>+</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msup>\n <mml:mrow>\n <mml:mo>[</mml:mo>\n <mml:msub>\n <mml:mi>Cap</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>]</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:mfrac>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\left [\\operatorname {Cap}_\\mathcal {A} ( \\lambda E_1 + (1-\\lambda ) E_2 )\\right ]^{\\frac {1}{(n-p)}} \\geq \\lambda \\, \\left [\\operatorname {Cap}_\\mathcal {A} ( E_1 )\\right ]^{\\frac {1}{(n-p)}} + (1-\\lambda ) \\left [\\operatorname {Cap}_\\mathcal {A} (E_2 )\\right ]^{\\frac {1}{(n-p)}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n\\]\n</disp-formula> when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 greater-than p greater-than n comma 0 greater-than lamda greater-than 1 comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>1</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">1>p>n, 0 > \\lambda > 1,</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 1 comma upper E 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">E_1, E_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are convex compact sets with positive <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-capacity. Moreover, if equality holds in the above inequality for some <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">E_1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 2 comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">E_2,</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> then under certain regularity and structural assumptions on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathv","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"The Brunn-Minkowski Inequality and A Minkowski Problem for Nonlinear Capacity\",\"authors\":\"M. Akman, Jasun Gong, Jay Hineman, Johnny M. Lewis, A. Vogel\",\"doi\":\"10.1090/memo/1348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article we study two classical potential-theoretic problems in convex geometry. The first problem is an inequality of Brunn-Minkowski type for a nonlinear capacity, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C a p Subscript script upper A Baseline comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>Cap</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\operatorname {Cap}_{\\\\mathcal {A}},</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {A}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-capacity is associated with a nonlinear elliptic PDE whose structure is modeled on the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-Laplace equation and whose solutions in an open set are called <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {A}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-harmonic.</p>\\n\\n<p>In the first part of this article, we prove the Brunn-Minkowski inequality for this capacity: <disp-formula content-type=\\\"math/mathml\\\">\\n\\\\[\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket upper C a p Subscript script upper A Baseline left-parenthesis lamda upper E 1 plus left-parenthesis 1 minus lamda right-parenthesis upper E 2 right-parenthesis right-bracket Superscript StartFraction 1 Over left-parenthesis n minus p right-parenthesis EndFraction Baseline greater-than-or-equal-to lamda left-bracket upper C a p Subscript script upper A Baseline left-parenthesis upper E 1 right-parenthesis right-bracket Superscript StartFraction 1 Over left-parenthesis n minus p right-parenthesis EndFraction Baseline plus left-parenthesis 1 minus lamda right-parenthesis left-bracket upper C a p Subscript script upper A Baseline left-parenthesis upper E 2 right-parenthesis right-bracket Superscript StartFraction 1 Over left-parenthesis n minus p right-parenthesis EndFraction\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mrow>\\n <mml:mo>[</mml:mo>\\n <mml:msub>\\n <mml:mi>Cap</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo><!-- --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo>+</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>]</mml:mo>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mfrac>\\n <mml:mn>1</mml:mn>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>p</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:mfrac>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mspace width=\\\"thinmathspace\\\" />\\n <mml:msup>\\n <mml:mrow>\\n <mml:mo>[</mml:mo>\\n <mml:msub>\\n <mml:mi>Cap</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo><!-- --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>]</mml:mo>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mfrac>\\n <mml:mn>1</mml:mn>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>p</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:mfrac>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo>+</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:msup>\\n <mml:mrow>\\n <mml:mo>[</mml:mo>\\n <mml:msub>\\n <mml:mi>Cap</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo><!-- --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>]</mml:mo>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mfrac>\\n <mml:mn>1</mml:mn>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>p</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:mfrac>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\left [\\\\operatorname {Cap}_\\\\mathcal {A} ( \\\\lambda E_1 + (1-\\\\lambda ) E_2 )\\\\right ]^{\\\\frac {1}{(n-p)}} \\\\geq \\\\lambda \\\\, \\\\left [\\\\operatorname {Cap}_\\\\mathcal {A} ( E_1 )\\\\right ]^{\\\\frac {1}{(n-p)}} + (1-\\\\lambda ) \\\\left [\\\\operatorname {Cap}_\\\\mathcal {A} (E_2 )\\\\right ]^{\\\\frac {1}{(n-p)}}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n\\\\]\\n</disp-formula> when <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"1 greater-than p greater-than n comma 0 greater-than lamda greater-than 1 comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>1</mml:mn>\\n <mml:mo>></mml:mo>\\n <mml:mi>p</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo>></mml:mo>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">1>p>n, 0 > \\\\lambda > 1,</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E 1 comma upper E 2\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E_1, E_2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are convex compact sets with positive <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {A}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-capacity. Moreover, if equality holds in the above inequality for some <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E 1\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E_1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E 2 comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E_2,</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> then under certain regularity and structural assumptions on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathv\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1348\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1348","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 28
引用
批量引用