Brunn—Minkowski不等式与非线性容量的一个Minkowsky问题

IF 2 4区 数学 Q1 MATHEMATICS
M. Akman, Jasun Gong, Jay Hineman, Johnny M. Lewis, A. Vogel
{"title":"Brunn—Minkowski不等式与非线性容量的一个Minkowsky问题","authors":"M. Akman, Jasun Gong, Jay Hineman, Johnny M. Lewis, A. Vogel","doi":"10.1090/memo/1348","DOIUrl":null,"url":null,"abstract":"<p>In this article we study two classical potential-theoretic problems in convex geometry. The first problem is an inequality of Brunn-Minkowski type for a nonlinear capacity, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C a p Subscript script upper A Baseline comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>Cap</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\operatorname {Cap}_{\\mathcal {A}},</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-capacity is associated with a nonlinear elliptic PDE whose structure is modeled on the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-Laplace equation and whose solutions in an open set are called <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-harmonic.</p>\n\n<p>In the first part of this article, we prove the Brunn-Minkowski inequality for this capacity: <disp-formula content-type=\"math/mathml\">\n\\[\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket upper C a p Subscript script upper A Baseline left-parenthesis lamda upper E 1 plus left-parenthesis 1 minus lamda right-parenthesis upper E 2 right-parenthesis right-bracket Superscript StartFraction 1 Over left-parenthesis n minus p right-parenthesis EndFraction Baseline greater-than-or-equal-to lamda left-bracket upper C a p Subscript script upper A Baseline left-parenthesis upper E 1 right-parenthesis right-bracket Superscript StartFraction 1 Over left-parenthesis n minus p right-parenthesis EndFraction Baseline plus left-parenthesis 1 minus lamda right-parenthesis left-bracket upper C a p Subscript script upper A Baseline left-parenthesis upper E 2 right-parenthesis right-bracket Superscript StartFraction 1 Over left-parenthesis n minus p right-parenthesis EndFraction\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow>\n <mml:mo>[</mml:mo>\n <mml:msub>\n <mml:mi>Cap</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>+</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>]</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:mfrac>\n </mml:mrow>\n </mml:msup>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mspace width=\"thinmathspace\" />\n <mml:msup>\n <mml:mrow>\n <mml:mo>[</mml:mo>\n <mml:msub>\n <mml:mi>Cap</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>]</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:mfrac>\n </mml:mrow>\n </mml:msup>\n <mml:mo>+</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msup>\n <mml:mrow>\n <mml:mo>[</mml:mo>\n <mml:msub>\n <mml:mi>Cap</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>]</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:mfrac>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\left [\\operatorname {Cap}_\\mathcal {A} ( \\lambda E_1 + (1-\\lambda ) E_2 )\\right ]^{\\frac {1}{(n-p)}} \\geq \\lambda \\, \\left [\\operatorname {Cap}_\\mathcal {A} ( E_1 )\\right ]^{\\frac {1}{(n-p)}} + (1-\\lambda ) \\left [\\operatorname {Cap}_\\mathcal {A} (E_2 )\\right ]^{\\frac {1}{(n-p)}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n\\]\n</disp-formula> when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 greater-than p greater-than n comma 0 greater-than lamda greater-than 1 comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>1</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">1>p>n, 0 > \\lambda > 1,</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 1 comma upper E 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">E_1, E_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are convex compact sets with positive <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-capacity. Moreover, if equality holds in the above inequality for some <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">E_1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 2 comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>E</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">E_2,</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> then under certain regularity and structural assumptions on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathv","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"The Brunn-Minkowski Inequality and A Minkowski Problem for Nonlinear Capacity\",\"authors\":\"M. Akman, Jasun Gong, Jay Hineman, Johnny M. Lewis, A. Vogel\",\"doi\":\"10.1090/memo/1348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article we study two classical potential-theoretic problems in convex geometry. The first problem is an inequality of Brunn-Minkowski type for a nonlinear capacity, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C a p Subscript script upper A Baseline comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>Cap</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\operatorname {Cap}_{\\\\mathcal {A}},</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {A}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-capacity is associated with a nonlinear elliptic PDE whose structure is modeled on the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-Laplace equation and whose solutions in an open set are called <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {A}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-harmonic.</p>\\n\\n<p>In the first part of this article, we prove the Brunn-Minkowski inequality for this capacity: <disp-formula content-type=\\\"math/mathml\\\">\\n\\\\[\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket upper C a p Subscript script upper A Baseline left-parenthesis lamda upper E 1 plus left-parenthesis 1 minus lamda right-parenthesis upper E 2 right-parenthesis right-bracket Superscript StartFraction 1 Over left-parenthesis n minus p right-parenthesis EndFraction Baseline greater-than-or-equal-to lamda left-bracket upper C a p Subscript script upper A Baseline left-parenthesis upper E 1 right-parenthesis right-bracket Superscript StartFraction 1 Over left-parenthesis n minus p right-parenthesis EndFraction Baseline plus left-parenthesis 1 minus lamda right-parenthesis left-bracket upper C a p Subscript script upper A Baseline left-parenthesis upper E 2 right-parenthesis right-bracket Superscript StartFraction 1 Over left-parenthesis n minus p right-parenthesis EndFraction\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mrow>\\n <mml:mo>[</mml:mo>\\n <mml:msub>\\n <mml:mi>Cap</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo>+</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>]</mml:mo>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mfrac>\\n <mml:mn>1</mml:mn>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>p</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:mfrac>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mspace width=\\\"thinmathspace\\\" />\\n <mml:msup>\\n <mml:mrow>\\n <mml:mo>[</mml:mo>\\n <mml:msub>\\n <mml:mi>Cap</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>]</mml:mo>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mfrac>\\n <mml:mn>1</mml:mn>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>p</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:mfrac>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo>+</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:msup>\\n <mml:mrow>\\n <mml:mo>[</mml:mo>\\n <mml:msub>\\n <mml:mi>Cap</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>]</mml:mo>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mfrac>\\n <mml:mn>1</mml:mn>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>p</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n </mml:mfrac>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\left [\\\\operatorname {Cap}_\\\\mathcal {A} ( \\\\lambda E_1 + (1-\\\\lambda ) E_2 )\\\\right ]^{\\\\frac {1}{(n-p)}} \\\\geq \\\\lambda \\\\, \\\\left [\\\\operatorname {Cap}_\\\\mathcal {A} ( E_1 )\\\\right ]^{\\\\frac {1}{(n-p)}} + (1-\\\\lambda ) \\\\left [\\\\operatorname {Cap}_\\\\mathcal {A} (E_2 )\\\\right ]^{\\\\frac {1}{(n-p)}}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n\\\\]\\n</disp-formula> when <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"1 greater-than p greater-than n comma 0 greater-than lamda greater-than 1 comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>1</mml:mn>\\n <mml:mo>></mml:mo>\\n <mml:mi>p</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo>></mml:mo>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">1>p>n, 0 > \\\\lambda > 1,</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E 1 comma upper E 2\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E_1, E_2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are convex compact sets with positive <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {A}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-capacity. Moreover, if equality holds in the above inequality for some <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E 1\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E_1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper E 2 comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>E</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">E_2,</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> then under certain regularity and structural assumptions on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathv\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1348\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1348","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 28

摘要

本文研究了凸几何中的两个经典势论问题。第一个问题是非线性容量Cap a \算子名的Brunn Minkowski型不等式{Cap}_{\mathcal{A}},其中A\mathcal}-容量与一个非线性椭圆PDE有关,该椭圆PDE的结构以p-p-Laplace方程为模型,其在开集中的解称为A\mathical{A〕-harmonic。在本文的第一部分中,我们证明了这个容量的Brun-Minkowski不等式:\[[Cap A⁡ (λE1+(1−λ)E2)]1(n−p)≥λ[第A章⁡ (E1)]1(n−p)+(1−λ)[第A章⁡ (E2)]1(n−p)\left[\operator name{Cap}_\mathcal{A}(\lambda E_1+(1-\lambda)E_2)\right]^{\frac{1}{(n-p)}}\geq\lambda\,\left[\operatorname{Cap}_\mathcal{A}(E_1)\right]^{\frac{1}{(n-p)}}+(1-\lambda)\left[\operatorname{Cap}_\当1>p>n,0>λ>1,1>p>n,0>\lambda>1和E1,E2 E_1,E_2是具有正A\mathcal{A}-容量的凸紧集。此外,如果在某些E1 E_1和E2,E_2的上述不等式中成立等式,则在本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
The Brunn-Minkowski Inequality and A Minkowski Problem for Nonlinear Capacity

In this article we study two classical potential-theoretic problems in convex geometry. The first problem is an inequality of Brunn-Minkowski type for a nonlinear capacity, Cap A , \operatorname {Cap}_{\mathcal {A}}, where A \mathcal {A} -capacity is associated with a nonlinear elliptic PDE whose structure is modeled on the p p -Laplace equation and whose solutions in an open set are called A \mathcal {A} -harmonic.

In the first part of this article, we prove the Brunn-Minkowski inequality for this capacity: \[ [ Cap A ( λ E 1 + ( 1 λ ) E 2 ) ] 1 ( n p ) λ [ Cap A ( E 1 ) ] 1 ( n p ) + ( 1 λ ) [ Cap A ( E 2 ) ] 1 ( n p ) \left [\operatorname {Cap}_\mathcal {A} ( \lambda E_1 + (1-\lambda ) E_2 )\right ]^{\frac {1}{(n-p)}} \geq \lambda \, \left [\operatorname {Cap}_\mathcal {A} ( E_1 )\right ]^{\frac {1}{(n-p)}} + (1-\lambda ) \left [\operatorname {Cap}_\mathcal {A} (E_2 )\right ]^{\frac {1}{(n-p)}} \] when 1 > p > n , 0 > λ > 1 , 1>p>n, 0 > \lambda > 1, and E 1 , E 2 E_1, E_2 are convex compact sets with positive A \mathcal {A} -capacity. Moreover, if equality holds in the above inequality for some E 1 E_1 and E 2 , E_2, then under certain regularity and structural assumptions on

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信