{"title":"英语资源语义分析的知识密集型和数据密集型模型比较","authors":"Junjie Cao, Zi-yu Lin, Weiwei Sun, Xiaojun Wan","doi":"10.1162/coli_a_00395","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we present a phenomenon-oriented comparative analysis of the two dominant approaches in English Resource Semantic (ERS) parsing: classic, knowledge-intensive and neural, data-intensive models. To reflect state-of-the-art neural NLP technologies, a factorization-based parser is introduced that can produce Elementary Dependency Structures much more accurately than previous data-driven parsers. We conduct a suite of tests for different linguistic phenomena to analyze the grammatical competence of different parsers, where we show that, despite comparable performance overall, knowledge- and data-intensive models produce different types of errors, in a way that can be explained by their theoretical properties. This analysis is beneficial to in-depth evaluation of several representative parsing techniques and leads to new directions for parser development.","PeriodicalId":55229,"journal":{"name":"Computational Linguistics","volume":"47 1","pages":"43-68"},"PeriodicalIF":3.7000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparing Knowledge-Intensive and Data-Intensive Models for English Resource Semantic Parsing\",\"authors\":\"Junjie Cao, Zi-yu Lin, Weiwei Sun, Xiaojun Wan\",\"doi\":\"10.1162/coli_a_00395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, we present a phenomenon-oriented comparative analysis of the two dominant approaches in English Resource Semantic (ERS) parsing: classic, knowledge-intensive and neural, data-intensive models. To reflect state-of-the-art neural NLP technologies, a factorization-based parser is introduced that can produce Elementary Dependency Structures much more accurately than previous data-driven parsers. We conduct a suite of tests for different linguistic phenomena to analyze the grammatical competence of different parsers, where we show that, despite comparable performance overall, knowledge- and data-intensive models produce different types of errors, in a way that can be explained by their theoretical properties. This analysis is beneficial to in-depth evaluation of several representative parsing techniques and leads to new directions for parser development.\",\"PeriodicalId\":55229,\"journal\":{\"name\":\"Computational Linguistics\",\"volume\":\"47 1\",\"pages\":\"43-68\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Linguistics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/coli_a_00395\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Linguistics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/coli_a_00395","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Comparing Knowledge-Intensive and Data-Intensive Models for English Resource Semantic Parsing
Abstract In this work, we present a phenomenon-oriented comparative analysis of the two dominant approaches in English Resource Semantic (ERS) parsing: classic, knowledge-intensive and neural, data-intensive models. To reflect state-of-the-art neural NLP technologies, a factorization-based parser is introduced that can produce Elementary Dependency Structures much more accurately than previous data-driven parsers. We conduct a suite of tests for different linguistic phenomena to analyze the grammatical competence of different parsers, where we show that, despite comparable performance overall, knowledge- and data-intensive models produce different types of errors, in a way that can be explained by their theoretical properties. This analysis is beneficial to in-depth evaluation of several representative parsing techniques and leads to new directions for parser development.
期刊介绍:
Computational Linguistics, the longest-running publication dedicated solely to the computational and mathematical aspects of language and the design of natural language processing systems, provides university and industry linguists, computational linguists, AI and machine learning researchers, cognitive scientists, speech specialists, and philosophers with the latest insights into the computational aspects of language research.