轨道转移的数据驱动非线性控制:从地球到月球和L4/5

Xianyang Chen
{"title":"轨道转移的数据驱动非线性控制:从地球到月球和L4/5","authors":"Xianyang Chen","doi":"10.4236/MME.2019.91001","DOIUrl":null,"url":null,"abstract":"From the recent thirty years, scientists will never stop exploring the outer space. To assist the development of travelling into the universe, I devote myself into providing theoretical support and future indications for designing the optimal orbit for satellite to travel in a Three-Body System. This paper offers the optimal orbit for satellite to change path in the earth-moon system. Also, it provides the path for the satellite to use the least fuel to go to the L4 and L5 Lagrange points. These inspiring results are obtained through several steps: to solve the problems caused by the non-linear character of Three-Body System, I use Koopman eigenfunction to change the system into a linear one. Data-driven method is adopted to find the most suitable Koopman eigenfunction to apply control. The traditional LQR operator for linear system is used to design the optimal orbit for the satellite.","PeriodicalId":69007,"journal":{"name":"现代机械工程(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Nonlinear Control for Orbit Transfer: From the Earth to Moon and L4/5\",\"authors\":\"Xianyang Chen\",\"doi\":\"10.4236/MME.2019.91001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From the recent thirty years, scientists will never stop exploring the outer space. To assist the development of travelling into the universe, I devote myself into providing theoretical support and future indications for designing the optimal orbit for satellite to travel in a Three-Body System. This paper offers the optimal orbit for satellite to change path in the earth-moon system. Also, it provides the path for the satellite to use the least fuel to go to the L4 and L5 Lagrange points. These inspiring results are obtained through several steps: to solve the problems caused by the non-linear character of Three-Body System, I use Koopman eigenfunction to change the system into a linear one. Data-driven method is adopted to find the most suitable Koopman eigenfunction to apply control. The traditional LQR operator for linear system is used to design the optimal orbit for the satellite.\",\"PeriodicalId\":69007,\"journal\":{\"name\":\"现代机械工程(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代机械工程(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/MME.2019.91001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代机械工程(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/MME.2019.91001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从最近三十年开始,科学家们将永远不会停止对外层空间的探索。为了协助宇宙旅行的发展,我致力于为设计卫星在三体系统中旅行的最佳轨道提供理论支持和未来指示。本文给出了地月系统中卫星变轨的最佳轨道。此外,它还为卫星使用最少的燃料到达L4和L5拉格朗日点提供了路径。这些启发性的结果是通过几个步骤得到的:为了解决由于三体系统的非线性特性而引起的问题,我使用库普曼本征函数将系统变为线性系统。采用数据驱动的方法来寻找最适合应用控制的库普曼本征函数。传统的线性系统LQR算子用于卫星的最优轨道设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Driven Nonlinear Control for Orbit Transfer: From the Earth to Moon and L4/5
From the recent thirty years, scientists will never stop exploring the outer space. To assist the development of travelling into the universe, I devote myself into providing theoretical support and future indications for designing the optimal orbit for satellite to travel in a Three-Body System. This paper offers the optimal orbit for satellite to change path in the earth-moon system. Also, it provides the path for the satellite to use the least fuel to go to the L4 and L5 Lagrange points. These inspiring results are obtained through several steps: to solve the problems caused by the non-linear character of Three-Body System, I use Koopman eigenfunction to change the system into a linear one. Data-driven method is adopted to find the most suitable Koopman eigenfunction to apply control. The traditional LQR operator for linear system is used to design the optimal orbit for the satellite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
115
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信