Rallabhandi Venkata Surya Subrahmanyam, K. Ramji, P. Rao
{"title":"EDMed Inconel 718采用粉末冶金(P/M)烧结电极,采用纳米级和微米级粉末制成","authors":"Rallabhandi Venkata Surya Subrahmanyam, K. Ramji, P. Rao","doi":"10.30765/er.40.3.06","DOIUrl":null,"url":null,"abstract":"This work presents experimental data carried out for surface modification of Inconel 718 using WC/Cu composite powder metallurgy (P/M) electrodes made of nano and micron sized particles. Both machine and tool parameters were selected for study and experiments were planned as per Taguchi’s L18 mixed orthogonal array in order to find the influence of parameters on surface roughness (SR) and micro-hardness (MH). Peak current, particle size and pulse on time were found to be most significant on both SR and MH. High reactive surface area of nano particles made surface alloying greater than the other tool electrodes and has shown its influence positively on both SR and MH. The EDX analysis reveals the migration of WC and Cu elements and deposition of carbon and oxygen particles on the surface. The XRD spectrum confirms presence of carbides (WC, W2C, Fe5C2, Cr7C3, Fe7C3 and Fe3C), oxides (Fe3O4, WO3 and Cr3O) and other intermetallics at different machining conditions indicating the influence of Pulse on time (TON) and Peak current (IP) on discharge energies and in turn on the properties of machined surface. The carbides generated on the machined surface increased the hardness to 845HV without much sacrifice of the roughness of the machined surface. The range of roughness values obtained in the present investigation is 2.443 to 4.098µm.","PeriodicalId":44022,"journal":{"name":"Engineering Review","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.30765/er.40.3.06","citationCount":"1","resultStr":"{\"title\":\"EDMed Inconel 718 using powder metallurgy (P/M) sintered electrode made with nano and micron sized powders\",\"authors\":\"Rallabhandi Venkata Surya Subrahmanyam, K. Ramji, P. Rao\",\"doi\":\"10.30765/er.40.3.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents experimental data carried out for surface modification of Inconel 718 using WC/Cu composite powder metallurgy (P/M) electrodes made of nano and micron sized particles. Both machine and tool parameters were selected for study and experiments were planned as per Taguchi’s L18 mixed orthogonal array in order to find the influence of parameters on surface roughness (SR) and micro-hardness (MH). Peak current, particle size and pulse on time were found to be most significant on both SR and MH. High reactive surface area of nano particles made surface alloying greater than the other tool electrodes and has shown its influence positively on both SR and MH. The EDX analysis reveals the migration of WC and Cu elements and deposition of carbon and oxygen particles on the surface. The XRD spectrum confirms presence of carbides (WC, W2C, Fe5C2, Cr7C3, Fe7C3 and Fe3C), oxides (Fe3O4, WO3 and Cr3O) and other intermetallics at different machining conditions indicating the influence of Pulse on time (TON) and Peak current (IP) on discharge energies and in turn on the properties of machined surface. The carbides generated on the machined surface increased the hardness to 845HV without much sacrifice of the roughness of the machined surface. The range of roughness values obtained in the present investigation is 2.443 to 4.098µm.\",\"PeriodicalId\":44022,\"journal\":{\"name\":\"Engineering Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.30765/er.40.3.06\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30765/er.40.3.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30765/er.40.3.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
EDMed Inconel 718 using powder metallurgy (P/M) sintered electrode made with nano and micron sized powders
This work presents experimental data carried out for surface modification of Inconel 718 using WC/Cu composite powder metallurgy (P/M) electrodes made of nano and micron sized particles. Both machine and tool parameters were selected for study and experiments were planned as per Taguchi’s L18 mixed orthogonal array in order to find the influence of parameters on surface roughness (SR) and micro-hardness (MH). Peak current, particle size and pulse on time were found to be most significant on both SR and MH. High reactive surface area of nano particles made surface alloying greater than the other tool electrodes and has shown its influence positively on both SR and MH. The EDX analysis reveals the migration of WC and Cu elements and deposition of carbon and oxygen particles on the surface. The XRD spectrum confirms presence of carbides (WC, W2C, Fe5C2, Cr7C3, Fe7C3 and Fe3C), oxides (Fe3O4, WO3 and Cr3O) and other intermetallics at different machining conditions indicating the influence of Pulse on time (TON) and Peak current (IP) on discharge energies and in turn on the properties of machined surface. The carbides generated on the machined surface increased the hardness to 845HV without much sacrifice of the roughness of the machined surface. The range of roughness values obtained in the present investigation is 2.443 to 4.098µm.
期刊介绍:
Engineering Review is an international journal designed to foster the exchange of ideas and transfer of knowledge between scientists and engineers involved in various engineering sciences that deal with investigations related to design, materials, technology, maintenance and manufacturing processes. It is not limited to the specific details of science and engineering but is instead devoted to a very wide range of subfields in the engineering sciences. It provides an appropriate resort for publishing the papers covering prior applications – based on the research topics comprising the entire engineering spectrum. Topics of particular interest thus include: mechanical engineering, naval architecture and marine engineering, fundamental engineering sciences, electrical engineering, computer sciences and civil engineering. Manuscripts addressing other issues may also be considered if they relate to engineering oriented subjects. The contributions, which may be analytical, numerical or experimental, should be of significance to the progress of mentioned topics. Papers that are merely illustrations of established principles or procedures generally will not be accepted. Occasionally, the magazine is ready to publish high-quality-selected papers from the conference after being renovated, expanded and written in accordance with the rules of the magazine. The high standard of excellence for any of published papers will be ensured by peer-review procedure. The journal takes into consideration only original scientific papers.