{"title":"粗类的回调图","authors":"Elisa Hartmann","doi":"10.1007/s10485-022-09707-8","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies the asymptotic product of two metric spaces. It is well defined if one of the spaces is visual or if both spaces are geodesic. In this case the asymptotic product is the pullback of a limit diagram in the coarse category. Using this product construction we can define a homotopy theory on coarse metric spaces in a natural way. We prove that all finite colimits exist in the coarse category.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Pullback Diagram in the Coarse Category\",\"authors\":\"Elisa Hartmann\",\"doi\":\"10.1007/s10485-022-09707-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper studies the asymptotic product of two metric spaces. It is well defined if one of the spaces is visual or if both spaces are geodesic. In this case the asymptotic product is the pullback of a limit diagram in the coarse category. Using this product construction we can define a homotopy theory on coarse metric spaces in a natural way. We prove that all finite colimits exist in the coarse category.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-022-09707-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-022-09707-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
This paper studies the asymptotic product of two metric spaces. It is well defined if one of the spaces is visual or if both spaces are geodesic. In this case the asymptotic product is the pullback of a limit diagram in the coarse category. Using this product construction we can define a homotopy theory on coarse metric spaces in a natural way. We prove that all finite colimits exist in the coarse category.
期刊介绍:
Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant.
Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.