Anna-Leena Kähkönen, David Sederberg, J. Viiri, A. Lindell, L. Bryan
{"title":"芬兰中学生的磁性心理模型","authors":"Anna-Leena Kähkönen, David Sederberg, J. Viiri, A. Lindell, L. Bryan","doi":"10.5617/nordina.5566","DOIUrl":null,"url":null,"abstract":"We examined Finnish lower secondary students’ mental models of magnetism through their drawings, written explanations and interviews. Secondary students in Finland (N=12) engaged in six lessons designed specifically to target three key concepts in understanding magnetism: structure and organization (magnetic domains), magnetic fields and magnetic interactions. We describe how, with a finite number of key concepts introduced, students reflected upon and revised their mental models of magnetism and magnetic interactions towards more sophisticated and normative scientific views. We found two new categories of students’ models: the pole model and pole/field model. The critical moments in evolving the models happened during the investigations regarding understanding magnetic fields and magnetic internal structure. This article gives an example for teachers and researchers of how to follow students’ development of mental models in science.","PeriodicalId":37114,"journal":{"name":"Nordic Studies in Science Education","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finnish Secondary Students’ Mental Models of Magnetism\",\"authors\":\"Anna-Leena Kähkönen, David Sederberg, J. Viiri, A. Lindell, L. Bryan\",\"doi\":\"10.5617/nordina.5566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examined Finnish lower secondary students’ mental models of magnetism through their drawings, written explanations and interviews. Secondary students in Finland (N=12) engaged in six lessons designed specifically to target three key concepts in understanding magnetism: structure and organization (magnetic domains), magnetic fields and magnetic interactions. We describe how, with a finite number of key concepts introduced, students reflected upon and revised their mental models of magnetism and magnetic interactions towards more sophisticated and normative scientific views. We found two new categories of students’ models: the pole model and pole/field model. The critical moments in evolving the models happened during the investigations regarding understanding magnetic fields and magnetic internal structure. This article gives an example for teachers and researchers of how to follow students’ development of mental models in science.\",\"PeriodicalId\":37114,\"journal\":{\"name\":\"Nordic Studies in Science Education\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nordic Studies in Science Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5617/nordina.5566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nordic Studies in Science Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5617/nordina.5566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finnish Secondary Students’ Mental Models of Magnetism
We examined Finnish lower secondary students’ mental models of magnetism through their drawings, written explanations and interviews. Secondary students in Finland (N=12) engaged in six lessons designed specifically to target three key concepts in understanding magnetism: structure and organization (magnetic domains), magnetic fields and magnetic interactions. We describe how, with a finite number of key concepts introduced, students reflected upon and revised their mental models of magnetism and magnetic interactions towards more sophisticated and normative scientific views. We found two new categories of students’ models: the pole model and pole/field model. The critical moments in evolving the models happened during the investigations regarding understanding magnetic fields and magnetic internal structure. This article gives an example for teachers and researchers of how to follow students’ development of mental models in science.