Zhe Wu, Yuying Zhang, Yang Xu, Desuan Jie, R. Jackson
{"title":"单微凸副弹性滑动接触闪蒸温度建模","authors":"Zhe Wu, Yuying Zhang, Yang Xu, Desuan Jie, R. Jackson","doi":"10.1115/1.4063334","DOIUrl":null,"url":null,"abstract":"\n The flash temperature in the sliding frictional contact between micro asperities has an important influence on the frictional characteristics of advanced functional ceramics. In this paper, the elastic sliding frictional contact of single three-dimensional micron/submicron scale asperity pair is considered. A three-dimensional finite element model (FEM) for fully coupled thermal-stress analysis of sliding contact of SiC/Al2O3 asperity pair is developed. An empirical correction factor for contact characteristics is obtained based on the FEM results. The FEM results show that, compared with the Hertz theoretical solution, the contact area becomes smaller and the contact pressure becomes larger in the case of sliding contact with large deformation. The flash temperature has a negative correlation with the composite radius of asperity pair, and a positive correlation with the interference depth and sliding speed. Using Hertz theory, parabolic distributed heat source, Fourier heat conduction law, and the newly-proposed correction factor, a semi-analytical model of flash temperature during the elastic frictional sliding between two single asperities is established. The relative difference between the flash temperature predicted by the established semi-analytical model and the FEM model is less than 1.2%. The relative difference decreases with the increasing interference depth. This work is of valuable reference for studying the frictional heat related issues of advanced ceramics.","PeriodicalId":17586,"journal":{"name":"Journal of Tribology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of Flash Temperature for Elastic Sliding Contact of Single Micro-Asperity Pair\",\"authors\":\"Zhe Wu, Yuying Zhang, Yang Xu, Desuan Jie, R. Jackson\",\"doi\":\"10.1115/1.4063334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The flash temperature in the sliding frictional contact between micro asperities has an important influence on the frictional characteristics of advanced functional ceramics. In this paper, the elastic sliding frictional contact of single three-dimensional micron/submicron scale asperity pair is considered. A three-dimensional finite element model (FEM) for fully coupled thermal-stress analysis of sliding contact of SiC/Al2O3 asperity pair is developed. An empirical correction factor for contact characteristics is obtained based on the FEM results. The FEM results show that, compared with the Hertz theoretical solution, the contact area becomes smaller and the contact pressure becomes larger in the case of sliding contact with large deformation. The flash temperature has a negative correlation with the composite radius of asperity pair, and a positive correlation with the interference depth and sliding speed. Using Hertz theory, parabolic distributed heat source, Fourier heat conduction law, and the newly-proposed correction factor, a semi-analytical model of flash temperature during the elastic frictional sliding between two single asperities is established. The relative difference between the flash temperature predicted by the established semi-analytical model and the FEM model is less than 1.2%. The relative difference decreases with the increasing interference depth. This work is of valuable reference for studying the frictional heat related issues of advanced ceramics.\",\"PeriodicalId\":17586,\"journal\":{\"name\":\"Journal of Tribology-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tribology-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063334\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tribology-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063334","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Modeling of Flash Temperature for Elastic Sliding Contact of Single Micro-Asperity Pair
The flash temperature in the sliding frictional contact between micro asperities has an important influence on the frictional characteristics of advanced functional ceramics. In this paper, the elastic sliding frictional contact of single three-dimensional micron/submicron scale asperity pair is considered. A three-dimensional finite element model (FEM) for fully coupled thermal-stress analysis of sliding contact of SiC/Al2O3 asperity pair is developed. An empirical correction factor for contact characteristics is obtained based on the FEM results. The FEM results show that, compared with the Hertz theoretical solution, the contact area becomes smaller and the contact pressure becomes larger in the case of sliding contact with large deformation. The flash temperature has a negative correlation with the composite radius of asperity pair, and a positive correlation with the interference depth and sliding speed. Using Hertz theory, parabolic distributed heat source, Fourier heat conduction law, and the newly-proposed correction factor, a semi-analytical model of flash temperature during the elastic frictional sliding between two single asperities is established. The relative difference between the flash temperature predicted by the established semi-analytical model and the FEM model is less than 1.2%. The relative difference decreases with the increasing interference depth. This work is of valuable reference for studying the frictional heat related issues of advanced ceramics.
期刊介绍:
The Journal of Tribology publishes over 100 outstanding technical articles of permanent interest to the tribology community annually and attracts articles by tribologists from around the world. The journal features a mix of experimental, numerical, and theoretical articles dealing with all aspects of the field. In addition to being of interest to engineers and other scientists doing research in the field, the Journal is also of great importance to engineers who design or use mechanical components such as bearings, gears, seals, magnetic recording heads and disks, or prosthetic joints, or who are involved with manufacturing processes.
Scope: Friction and wear; Fluid film lubrication; Elastohydrodynamic lubrication; Surface properties and characterization; Contact mechanics; Magnetic recordings; Tribological systems; Seals; Bearing design and technology; Gears; Metalworking; Lubricants; Artificial joints