在非交换轨道上跟踪射影模

IF 0.7 2区 数学 Q2 MATHEMATICS
Sayan Chakraborty
{"title":"在非交换轨道上跟踪射影模","authors":"Sayan Chakraborty","doi":"10.4171/jncg/487","DOIUrl":null,"url":null,"abstract":"For an action of a finite cyclic group $F$ on an $n$-dimensional noncommutative torus $A_\\theta,$ we give sufficient conditions when the fundamental projective modules over $A_\\theta$, which determine the range of the canonical trace on $A_\\theta,$ extend to projective modules over the crossed product C*-algebra $A_\\theta \\rtimes F.$ Our results allow us to understand the range of the canonical trace on $A_\\theta \\rtimes F$, and determine it completely for several examples including the crossed products of 2-dimensional noncommutative tori with finite cyclic groups and the flip action of $\\mathbb{Z}_2$ on any $n$-dimensional noncommutative torus. As an application, for the flip action of $\\mathbb{Z}_2$ on a simple $n$-dimensional torus $A_\\theta$, we determine the Morita equivalence class of $A_\\theta \\rtimes \\mathbb{Z}_2,$ in terms of the Morita equivalence class of $A_\\theta.$","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tracing projective modules over noncommutative orbifolds\",\"authors\":\"Sayan Chakraborty\",\"doi\":\"10.4171/jncg/487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an action of a finite cyclic group $F$ on an $n$-dimensional noncommutative torus $A_\\\\theta,$ we give sufficient conditions when the fundamental projective modules over $A_\\\\theta$, which determine the range of the canonical trace on $A_\\\\theta,$ extend to projective modules over the crossed product C*-algebra $A_\\\\theta \\\\rtimes F.$ Our results allow us to understand the range of the canonical trace on $A_\\\\theta \\\\rtimes F$, and determine it completely for several examples including the crossed products of 2-dimensional noncommutative tori with finite cyclic groups and the flip action of $\\\\mathbb{Z}_2$ on any $n$-dimensional noncommutative torus. As an application, for the flip action of $\\\\mathbb{Z}_2$ on a simple $n$-dimensional torus $A_\\\\theta$, we determine the Morita equivalence class of $A_\\\\theta \\\\rtimes \\\\mathbb{Z}_2,$ in terms of the Morita equivalence class of $A_\\\\theta.$\",\"PeriodicalId\":54780,\"journal\":{\"name\":\"Journal of Noncommutative Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Noncommutative Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jncg/487\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/487","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

对于有限循环群$F$在$n$维非交换环面$a_θ上的作用,我们给出了当$a_,$推广到叉积C*-代数$A_\theta\rtimes F$上的投影模。我们的结果使我们能够理解$A_\θ\rtimes F$$上正则迹的范围,并对几个例子完全确定它,包括具有有限循环群的二维非交换复曲面的叉积和$\mathbb的翻转作用{Z}_2在任何$n$维的非交换环面上。作为应用程序,对于$\mathbb的翻转操作{Z}_2在一个简单的$n$维环面$a_\theta$上,我们确定了$a_\ttheta\rtimes\mathbb的Morita等价类{Z}_2,$的Morita等价类$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracing projective modules over noncommutative orbifolds
For an action of a finite cyclic group $F$ on an $n$-dimensional noncommutative torus $A_\theta,$ we give sufficient conditions when the fundamental projective modules over $A_\theta$, which determine the range of the canonical trace on $A_\theta,$ extend to projective modules over the crossed product C*-algebra $A_\theta \rtimes F.$ Our results allow us to understand the range of the canonical trace on $A_\theta \rtimes F$, and determine it completely for several examples including the crossed products of 2-dimensional noncommutative tori with finite cyclic groups and the flip action of $\mathbb{Z}_2$ on any $n$-dimensional noncommutative torus. As an application, for the flip action of $\mathbb{Z}_2$ on a simple $n$-dimensional torus $A_\theta$, we determine the Morita equivalence class of $A_\theta \rtimes \mathbb{Z}_2,$ in terms of the Morita equivalence class of $A_\theta.$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信