{"title":"模糊分数阶微分方程的适定性与稳定性","authors":"Xuping Zhang, Yanli Xi, D. O’Regan","doi":"10.15388/namc.2022.27.28096","DOIUrl":null,"url":null,"abstract":"In this article, we consider the existence and uniqueness of solutions for a class of initial value problems of fuzzy Caputo–Katugampola fractional differential equations and the stability of the corresponding fuzzy fractional differential equations. The discussions are based on the hyperbolic function, the Banach fixed point theorem and an inequality property. Two examples are given to illustrate the feasibility of our theoretical results.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness and stability for fuzzy fractional differential equations\",\"authors\":\"Xuping Zhang, Yanli Xi, D. O’Regan\",\"doi\":\"10.15388/namc.2022.27.28096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we consider the existence and uniqueness of solutions for a class of initial value problems of fuzzy Caputo–Katugampola fractional differential equations and the stability of the corresponding fuzzy fractional differential equations. The discussions are based on the hyperbolic function, the Banach fixed point theorem and an inequality property. Two examples are given to illustrate the feasibility of our theoretical results.\",\"PeriodicalId\":49286,\"journal\":{\"name\":\"Nonlinear Analysis-Modelling and Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Modelling and Control\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15388/namc.2022.27.28096\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Modelling and Control","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2022.27.28096","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Well-posedness and stability for fuzzy fractional differential equations
In this article, we consider the existence and uniqueness of solutions for a class of initial value problems of fuzzy Caputo–Katugampola fractional differential equations and the stability of the corresponding fuzzy fractional differential equations. The discussions are based on the hyperbolic function, the Banach fixed point theorem and an inequality property. Two examples are given to illustrate the feasibility of our theoretical results.
期刊介绍:
The scope of the journal is to provide a multidisciplinary forum for scientists, researchers and engineers involved in research and design of nonlinear processes and phenomena, including the nonlinear modelling of phenomena of the nature. The journal accepts contributions on nonlinear phenomena and processes in any field of science and technology.
The aims of the journal are: to provide a presentation of theoretical results and applications; to cover research results of multidisciplinary interest; to provide fast publishing of quality papers by extensive work of editors and referees; to provide an early access to the information by presenting the complete papers on Internet.