销售预测混合误差反馈模型的建立

Q4 Computer Science
Mehdi Farrokhbakht Foumani, Sajad Moazami Goudarzi
{"title":"销售预测混合误差反馈模型的建立","authors":"Mehdi Farrokhbakht Foumani, Sajad Moazami Goudarzi","doi":"10.52547/JIST.9.34.131","DOIUrl":null,"url":null,"abstract":"Sales forecasting is one of the significant issues in the industrial and service sector which can lead to facilitated management decisions and reduce the lost values in case of being dealt with properly. Also sales forecasting is one of the complicated problems in analyzing time series and data mining due to the number of intervening parameters. Various models were presented on this issue and each one found acceptable results. However, developing the methods in this study is still considered by researchers. In this regard, the present study provided a hybrid model with error feedback for sales forecasting. In this study, forecasting was conducted using a supervised learning method. Then, the remaining values (model error) were specified and the error values were forecasted using another learning method. Finally, two trained models were combined together and consecutively used for sales forecasting. In other words, first the forecasting was conducted and then the error rate was determined by the second model. The total forecasting and model error indicated the final forecasting. The computational results obtained from numerical experiments indicated the superiority of the proposed hybrid method performance over the common models in the available literature and reduced the indicators related to forecasting error.","PeriodicalId":37681,"journal":{"name":"Journal of Information Systems and Telecommunication","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Development of a Hybrid Error Feedback Model for Sales\\n Forecasting\",\"authors\":\"Mehdi Farrokhbakht Foumani, Sajad Moazami Goudarzi\",\"doi\":\"10.52547/JIST.9.34.131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sales forecasting is one of the significant issues in the industrial and service sector which can lead to facilitated management decisions and reduce the lost values in case of being dealt with properly. Also sales forecasting is one of the complicated problems in analyzing time series and data mining due to the number of intervening parameters. Various models were presented on this issue and each one found acceptable results. However, developing the methods in this study is still considered by researchers. In this regard, the present study provided a hybrid model with error feedback for sales forecasting. In this study, forecasting was conducted using a supervised learning method. Then, the remaining values (model error) were specified and the error values were forecasted using another learning method. Finally, two trained models were combined together and consecutively used for sales forecasting. In other words, first the forecasting was conducted and then the error rate was determined by the second model. The total forecasting and model error indicated the final forecasting. The computational results obtained from numerical experiments indicated the superiority of the proposed hybrid method performance over the common models in the available literature and reduced the indicators related to forecasting error.\",\"PeriodicalId\":37681,\"journal\":{\"name\":\"Journal of Information Systems and Telecommunication\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Systems and Telecommunication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/JIST.9.34.131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Systems and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/JIST.9.34.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

销售预测是工业和服务业的一个重要问题,它可以促进管理决策,并在处理得当的情况下减少价值损失。此外,由于干预参数的数量,销售预测是时间序列分析和数据挖掘中的一个复杂问题。在这个问题上提出了各种模型,每一个模型都得到了可接受的结果。然而,研究人员仍在考虑开发本研究中的方法。在这方面,本研究为销售预测提供了一个带有误差反馈的混合模型。在这项研究中,使用监督学习方法进行预测。然后,指定剩余值(模型误差),并使用另一种学习方法预测误差值。最后,将两个经过训练的模型组合在一起,并连续用于销售预测。换句话说,首先进行预测,然后通过第二个模型确定误差率。总的预测和模型误差表明了最终的预测。数值实验的计算结果表明,与现有文献中的常见模型相比,所提出的混合方法的性能优越,并减少了与预测误差相关的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Development of a Hybrid Error Feedback Model for Sales Forecasting
Sales forecasting is one of the significant issues in the industrial and service sector which can lead to facilitated management decisions and reduce the lost values in case of being dealt with properly. Also sales forecasting is one of the complicated problems in analyzing time series and data mining due to the number of intervening parameters. Various models were presented on this issue and each one found acceptable results. However, developing the methods in this study is still considered by researchers. In this regard, the present study provided a hybrid model with error feedback for sales forecasting. In this study, forecasting was conducted using a supervised learning method. Then, the remaining values (model error) were specified and the error values were forecasted using another learning method. Finally, two trained models were combined together and consecutively used for sales forecasting. In other words, first the forecasting was conducted and then the error rate was determined by the second model. The total forecasting and model error indicated the final forecasting. The computational results obtained from numerical experiments indicated the superiority of the proposed hybrid method performance over the common models in the available literature and reduced the indicators related to forecasting error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Information Systems and Telecommunication
Journal of Information Systems and Telecommunication Computer Science-Information Systems
CiteScore
0.80
自引率
0.00%
发文量
24
审稿时长
24 weeks
期刊介绍: This Journal will emphasize the context of the researches based on theoretical and practical implications of information Systems and Telecommunications. JIST aims to promote the study and knowledge investigation in the related fields. The Journal covers technical, economic, social, legal and historic aspects of the rapidly expanding worldwide communications and information industry. The journal aims to put new developments in all related areas into context, help readers broaden their knowledge and deepen their understanding of telecommunications policy and practice. JIST encourages submissions that reflect the wide and interdisciplinary nature of the subject and articles that integrate technological disciplines with social, contextual and management issues. JIST is planned to build particularly its reputation by publishing qualitative researches and it welcomes such papers. This journal aims to disseminate success stories, lessons learnt, and best practices captured by researchers in the related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信