广义时滞Logistic方程中的松弛环

IF 0.3 Q4 PHYSICS, MULTIDISCIPLINARY
S. A. Kashchenko, A. Tolbey
{"title":"广义时滞Logistic方程中的松弛环","authors":"S. A. Kashchenko, A. Tolbey","doi":"10.33581/1561-4085-2022-25-4-377-380","DOIUrl":null,"url":null,"abstract":"Asymptotic methods are used to study solutions of a modified logistic equation with a delay containing a large parameter. A result on the existence and stability of a relaxation cycle is given.","PeriodicalId":43601,"journal":{"name":"Nonlinear Phenomena in Complex Systems","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relaxation Cycles in the Generalized Logistic Equation with Delay\",\"authors\":\"S. A. Kashchenko, A. Tolbey\",\"doi\":\"10.33581/1561-4085-2022-25-4-377-380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Asymptotic methods are used to study solutions of a modified logistic equation with a delay containing a large parameter. A result on the existence and stability of a relaxation cycle is given.\",\"PeriodicalId\":43601,\"journal\":{\"name\":\"Nonlinear Phenomena in Complex Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Phenomena in Complex Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33581/1561-4085-2022-25-4-377-380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Phenomena in Complex Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/1561-4085-2022-25-4-377-380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

用渐近方法研究了一类具有大参数时滞的修正logistic方程的解。给出了一个关于弛豫循环存在性和稳定性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relaxation Cycles in the Generalized Logistic Equation with Delay
Asymptotic methods are used to study solutions of a modified logistic equation with a delay containing a large parameter. A result on the existence and stability of a relaxation cycle is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nonlinear Phenomena in Complex Systems
Nonlinear Phenomena in Complex Systems PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.90
自引率
25.00%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信