CD8+T细胞对脑内寄生虫感染反应的分数扩散模型

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
A. Farhadi, E. Hanert
{"title":"CD8+T细胞对脑内寄生虫感染反应的分数扩散模型","authors":"A. Farhadi, E. Hanert","doi":"10.1051/mmnp/2022003","DOIUrl":null,"url":null,"abstract":"Toxoplasma gondii (T. gondii) is a parasitic pathogen that causes serious brain diseases in fetuses and patients with immunodeficiency, particularly AIDS patients. In the field of immunology, a large number of studies have shown that effector CD8 + T cells respond to T. gondii infection in the brain tissue through controlling the proliferation of intracellular parasites and killing infected brain cells. These protective mechanisms do not occur without T cell movement and searching for infected cells, as a fundamental  feature of the immune system. Following infection with a pathogen in a tissue, in their search for infected cells, CD8 + T cells can perform different stochastic searches, including Levy and Brownian random walks. Statistical analysis of CD8 + T cells in response to infected brain cells could be described by a Levy random walk., In this work, by considering a Levy distribution for the displacements, we propose a space fractional-order diffusion equation for the T cell density in the infected brain tissue. Furthermore, we derive a mathematical model representing CD8 + T cell response to infected brain cells. By solving the model equations numerically, we perform a comparison between Levy and Brownian search strategies.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fractional diffusion model of CD8+T cells response to parasitic infection in the brain\",\"authors\":\"A. Farhadi, E. Hanert\",\"doi\":\"10.1051/mmnp/2022003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Toxoplasma gondii (T. gondii) is a parasitic pathogen that causes serious brain diseases in fetuses and patients with immunodeficiency, particularly AIDS patients. In the field of immunology, a large number of studies have shown that effector CD8 + T cells respond to T. gondii infection in the brain tissue through controlling the proliferation of intracellular parasites and killing infected brain cells. These protective mechanisms do not occur without T cell movement and searching for infected cells, as a fundamental  feature of the immune system. Following infection with a pathogen in a tissue, in their search for infected cells, CD8 + T cells can perform different stochastic searches, including Levy and Brownian random walks. Statistical analysis of CD8 + T cells in response to infected brain cells could be described by a Levy random walk., In this work, by considering a Levy distribution for the displacements, we propose a space fractional-order diffusion equation for the T cell density in the infected brain tissue. Furthermore, we derive a mathematical model representing CD8 + T cell response to infected brain cells. By solving the model equations numerically, we perform a comparison between Levy and Brownian search strategies.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/mmnp/2022003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2022003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

弓形虫(T.gondii)是一种寄生病原体,会导致胎儿和免疫缺陷患者,特别是艾滋病患者患上严重的脑部疾病。在免疫学领域,大量研究表明,效应CD8+T细胞通过控制细胞内寄生虫的增殖和杀死受感染的脑细胞,对脑组织中的弓形虫感染做出反应。如果没有T细胞的运动和寻找受感染的细胞,这些保护机制就不会发生,这是免疫系统的一个基本特征。在组织中感染病原体后,在寻找感染细胞时,CD8+T细胞可以进行不同的随机搜索,包括Levy和Brownian随机行走。CD8+T细胞对感染的脑细胞的反应的统计分析可以通过Levy随机游走来描述。,在这项工作中,通过考虑位移的Levy分布,我们提出了感染脑组织中T细胞密度的空间分数阶扩散方程。此外,我们推导了一个代表CD8+T细胞对受感染脑细胞反应的数学模型。通过数值求解模型方程,我们对Levy和Brownian搜索策略进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fractional diffusion model of CD8+T cells response to parasitic infection in the brain
Toxoplasma gondii (T. gondii) is a parasitic pathogen that causes serious brain diseases in fetuses and patients with immunodeficiency, particularly AIDS patients. In the field of immunology, a large number of studies have shown that effector CD8 + T cells respond to T. gondii infection in the brain tissue through controlling the proliferation of intracellular parasites and killing infected brain cells. These protective mechanisms do not occur without T cell movement and searching for infected cells, as a fundamental  feature of the immune system. Following infection with a pathogen in a tissue, in their search for infected cells, CD8 + T cells can perform different stochastic searches, including Levy and Brownian random walks. Statistical analysis of CD8 + T cells in response to infected brain cells could be described by a Levy random walk., In this work, by considering a Levy distribution for the displacements, we propose a space fractional-order diffusion equation for the T cell density in the infected brain tissue. Furthermore, we derive a mathematical model representing CD8 + T cell response to infected brain cells. By solving the model equations numerically, we perform a comparison between Levy and Brownian search strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信