从PELVE校准分布模型

IF 1.4 Q3 BUSINESS, FINANCE
H. Assa, Liyuan Lin, Ruodu Wang
{"title":"从PELVE校准分布模型","authors":"H. Assa, Liyuan Lin, Ruodu Wang","doi":"10.1080/10920277.2023.2211648","DOIUrl":null,"url":null,"abstract":"The Value-at-Risk (VaR) and the Expected Shortfall (ES) are the two most popular risk measures in banking and insurance regulation. To bridge between the two regulatory risk measures, the Probability Equivalent Level of VaR-ES (PELVE) was recently proposed to convert a level of VaR to that of ES. It is straightforward to compute the value of PELVE for a given distribution model. In this paper, we study the converse problem of PELVE calibration, that is, to find a distribution model that yields a given PELVE, which may either be obtained from data or from expert opinion. We discuss separately the cases when one-point, two-point, n-point and curve constraints are given. In the most complicated case of a curve constraint, we convert the calibration problem to that of an advanced differential equation. We apply the model calibration techniques to estimation and simulation for datasets used in insurance. We further study some technical properties of PELVE by offering a few new results on monotonicity and convergence.","PeriodicalId":46812,"journal":{"name":"North American Actuarial Journal","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibrating Distribution Models from PELVE\",\"authors\":\"H. Assa, Liyuan Lin, Ruodu Wang\",\"doi\":\"10.1080/10920277.2023.2211648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Value-at-Risk (VaR) and the Expected Shortfall (ES) are the two most popular risk measures in banking and insurance regulation. To bridge between the two regulatory risk measures, the Probability Equivalent Level of VaR-ES (PELVE) was recently proposed to convert a level of VaR to that of ES. It is straightforward to compute the value of PELVE for a given distribution model. In this paper, we study the converse problem of PELVE calibration, that is, to find a distribution model that yields a given PELVE, which may either be obtained from data or from expert opinion. We discuss separately the cases when one-point, two-point, n-point and curve constraints are given. In the most complicated case of a curve constraint, we convert the calibration problem to that of an advanced differential equation. We apply the model calibration techniques to estimation and simulation for datasets used in insurance. We further study some technical properties of PELVE by offering a few new results on monotonicity and convergence.\",\"PeriodicalId\":46812,\"journal\":{\"name\":\"North American Actuarial Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"North American Actuarial Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10920277.2023.2211648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Actuarial Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10920277.2023.2211648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

风险价值(VaR)和预期缺口(ES)是银行和保险监管中最受欢迎的两种风险度量。为了在这两种监管风险度量之间架起桥梁,最近提出了风险值ES的概率等效水平(PELVE),以将风险值的水平转换为ES的水平。对于给定的分布模型,计算PELVE的值很简单。在本文中,我们研究了PELVE校准的逆问题,即找到一个产生给定PELVE的分布模型,该分布模型可以从数据中获得,也可以从专家意见中获得。分别讨论了一点约束、两点约束、n点约束和曲线约束的情况。在曲线约束最复杂的情况下,我们将校准问题转换为高级微分方程的校准问题。我们将模型校准技术应用于保险数据集的估计和模拟。通过提供一些关于单调性和收敛性的新结果,我们进一步研究了PELVE的一些技术性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibrating Distribution Models from PELVE
The Value-at-Risk (VaR) and the Expected Shortfall (ES) are the two most popular risk measures in banking and insurance regulation. To bridge between the two regulatory risk measures, the Probability Equivalent Level of VaR-ES (PELVE) was recently proposed to convert a level of VaR to that of ES. It is straightforward to compute the value of PELVE for a given distribution model. In this paper, we study the converse problem of PELVE calibration, that is, to find a distribution model that yields a given PELVE, which may either be obtained from data or from expert opinion. We discuss separately the cases when one-point, two-point, n-point and curve constraints are given. In the most complicated case of a curve constraint, we convert the calibration problem to that of an advanced differential equation. We apply the model calibration techniques to estimation and simulation for datasets used in insurance. We further study some technical properties of PELVE by offering a few new results on monotonicity and convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
14.30%
发文量
38
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信