{"title":"Kenmotsu空间形式高斜子流形的广义归一化δ-Casorati曲率的最优不等式","authors":"M. Lone","doi":"10.1080/1726037X.2018.1564579","DOIUrl":null,"url":null,"abstract":"ABSTRACT The main objective of the present paper is to generalize the inequalities obtained by the same author M. A. Lone, Filomat, 31:15, pp 4925-4932 and M.A. Lone, Balkan Journal of Geometry and Its Applications, 22(1), pp 41-50 in the contact version. We consider hi-slant submanifolds of Kenmotsu space forms to obtain the inequalities and also discuss the equality case.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"17 1","pages":"39 - 50"},"PeriodicalIF":0.4000,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2018.1564579","citationCount":"0","resultStr":"{\"title\":\"Optimal Inequalities for Generalized Normalized δ-Casorati Curvatures for Hi-Slant Submanifolds of Kenmotsu Space Forms\",\"authors\":\"M. Lone\",\"doi\":\"10.1080/1726037X.2018.1564579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The main objective of the present paper is to generalize the inequalities obtained by the same author M. A. Lone, Filomat, 31:15, pp 4925-4932 and M.A. Lone, Balkan Journal of Geometry and Its Applications, 22(1), pp 41-50 in the contact version. We consider hi-slant submanifolds of Kenmotsu space forms to obtain the inequalities and also discuss the equality case.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"17 1\",\"pages\":\"39 - 50\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1726037X.2018.1564579\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2018.1564579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2018.1564579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文的主要目的是推广由同一作者M.A. Lone, Filomat, 31:15, pp 4925-4932和M.A. Lone, Balkan Journal of Geometry and Its Applications, 22(1), pp 41-50在接触版中得到的不等式。我们考虑Kenmotsu空间形式的高倾斜子流形,得到了不等式,并讨论了相等的情况。
Optimal Inequalities for Generalized Normalized δ-Casorati Curvatures for Hi-Slant Submanifolds of Kenmotsu Space Forms
ABSTRACT The main objective of the present paper is to generalize the inequalities obtained by the same author M. A. Lone, Filomat, 31:15, pp 4925-4932 and M.A. Lone, Balkan Journal of Geometry and Its Applications, 22(1), pp 41-50 in the contact version. We consider hi-slant submanifolds of Kenmotsu space forms to obtain the inequalities and also discuss the equality case.