{"title":"轻型木框架建筑支撑不规则性的地震效应","authors":"Angela Liu, Minghao Li","doi":"10.5459/bnzsee.56.1.29-37","DOIUrl":null,"url":null,"abstract":"Most residential buildings in New Zealand are low-rise light timber-framed (LTF) buildings, constructed according to a prescriptive standard – NZS 3604:2011 Timber-framed buildings. NZS 3604:2011 tabulates the seismic demand and also specifies the test procedure for evaluating the seismic resistance of proprietary LTF walls, which are often plasterboard walls. Designers need to ensure the provided total seismic bracing capacity is at least equal to the total seismic bracing demand, provided that bracing arrangements satisfy the specified irregularity limits.\nThe irregularity limits of bracing arrangements in NZS3604:2011 were established based on engineering rules of thumb rather than rigorous scientific evidence. Earthquake damage observed in the 2010/11 Canterbury earthquake sequence demonstrated that simple regular LTF houses performed well while irregular houses often had significant damage that was uneconomical to repair. This suggested that the irregularity of LTF buildings was an important factor responsible for the exacerbated earthquake damage.\nTo quantify seismic effects of permissible irregularities in NZS 3604:2011 and provide scientific evidence for elaborating irregularity limits in NZS 3604:2011, three single storey LTF buildings with varying degrees of permissible plan irregularities were designed and their seismic performance was studied by conducting three-dimensional non-linear push-over analyses. For the non-linear push-over analyses, the in-plane behaviour of LTF walls and ceiling diaphragms were modelled using the models, developed based on NZ practice, as reported in previous research.\nThe study revealed that permissible irregular bracing arrangements in NZS 3604:2011 could amplify lateral deflections significantly, in comparison with the regular counterparts. As a result, irregular LTF buildings within the scope of NZS 3604:2011 could be susceptible to damage due to excessive deformations in earthquakes and this suggests that the irregularity limits in current NZS 3604:2011 be reviewed and tightened.","PeriodicalId":46396,"journal":{"name":"Bulletin of the New Zealand Society for Earthquake Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Seismic effects of bracing irregularity of light timber-framed buildings\",\"authors\":\"Angela Liu, Minghao Li\",\"doi\":\"10.5459/bnzsee.56.1.29-37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most residential buildings in New Zealand are low-rise light timber-framed (LTF) buildings, constructed according to a prescriptive standard – NZS 3604:2011 Timber-framed buildings. NZS 3604:2011 tabulates the seismic demand and also specifies the test procedure for evaluating the seismic resistance of proprietary LTF walls, which are often plasterboard walls. Designers need to ensure the provided total seismic bracing capacity is at least equal to the total seismic bracing demand, provided that bracing arrangements satisfy the specified irregularity limits.\\nThe irregularity limits of bracing arrangements in NZS3604:2011 were established based on engineering rules of thumb rather than rigorous scientific evidence. Earthquake damage observed in the 2010/11 Canterbury earthquake sequence demonstrated that simple regular LTF houses performed well while irregular houses often had significant damage that was uneconomical to repair. This suggested that the irregularity of LTF buildings was an important factor responsible for the exacerbated earthquake damage.\\nTo quantify seismic effects of permissible irregularities in NZS 3604:2011 and provide scientific evidence for elaborating irregularity limits in NZS 3604:2011, three single storey LTF buildings with varying degrees of permissible plan irregularities were designed and their seismic performance was studied by conducting three-dimensional non-linear push-over analyses. For the non-linear push-over analyses, the in-plane behaviour of LTF walls and ceiling diaphragms were modelled using the models, developed based on NZ practice, as reported in previous research.\\nThe study revealed that permissible irregular bracing arrangements in NZS 3604:2011 could amplify lateral deflections significantly, in comparison with the regular counterparts. As a result, irregular LTF buildings within the scope of NZS 3604:2011 could be susceptible to damage due to excessive deformations in earthquakes and this suggests that the irregularity limits in current NZS 3604:2011 be reviewed and tightened.\",\"PeriodicalId\":46396,\"journal\":{\"name\":\"Bulletin of the New Zealand Society for Earthquake Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the New Zealand Society for Earthquake Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5459/bnzsee.56.1.29-37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the New Zealand Society for Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5459/bnzsee.56.1.29-37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Seismic effects of bracing irregularity of light timber-framed buildings
Most residential buildings in New Zealand are low-rise light timber-framed (LTF) buildings, constructed according to a prescriptive standard – NZS 3604:2011 Timber-framed buildings. NZS 3604:2011 tabulates the seismic demand and also specifies the test procedure for evaluating the seismic resistance of proprietary LTF walls, which are often plasterboard walls. Designers need to ensure the provided total seismic bracing capacity is at least equal to the total seismic bracing demand, provided that bracing arrangements satisfy the specified irregularity limits.
The irregularity limits of bracing arrangements in NZS3604:2011 were established based on engineering rules of thumb rather than rigorous scientific evidence. Earthquake damage observed in the 2010/11 Canterbury earthquake sequence demonstrated that simple regular LTF houses performed well while irregular houses often had significant damage that was uneconomical to repair. This suggested that the irregularity of LTF buildings was an important factor responsible for the exacerbated earthquake damage.
To quantify seismic effects of permissible irregularities in NZS 3604:2011 and provide scientific evidence for elaborating irregularity limits in NZS 3604:2011, three single storey LTF buildings with varying degrees of permissible plan irregularities were designed and their seismic performance was studied by conducting three-dimensional non-linear push-over analyses. For the non-linear push-over analyses, the in-plane behaviour of LTF walls and ceiling diaphragms were modelled using the models, developed based on NZ practice, as reported in previous research.
The study revealed that permissible irregular bracing arrangements in NZS 3604:2011 could amplify lateral deflections significantly, in comparison with the regular counterparts. As a result, irregular LTF buildings within the scope of NZS 3604:2011 could be susceptible to damage due to excessive deformations in earthquakes and this suggests that the irregularity limits in current NZS 3604:2011 be reviewed and tightened.